Effects of humic acid supplemented feeds on growth performance, hematological parameters and antioxıdant capacity on common carp (Cyprinus carpio)

Humic acid supplemented diets for Common carp





Common carp, humic acid, hematological parameters, antioxidant, fish feed


The present study investigated the impact of humic acid on the growth, blood parameters, and antioxidant capacity of common carp (Cyprinus carpio). Fish were fed twice a day until saturation with increasing doses of humic acid at 0.0, 0.2, 0.4 and 0.8%. In a 60-day feeding treatment, FW, WG and SGR values (41.37±0.87, 23.26±1.01, 1.37±0.05 respectively) of the group with 0.4% humic acid had statistically greater values compared to the control group (p<0.05). RBC (red blood cell), WBC (white blood cell) and Hct (haematocrit) parameters were evaluated for haematological analyses, the WBC value of the group fed 0.2% and 0.4% humic acid (20.62±3.74, 21.43±1.50 respectively) increased significantly (p<0.05). However, serum biochemistry parameters did not show any statistical difference (p>0.05). The SOD analysis evaluated to determine the antioxidant capacity showed that the group fed 0.4% and 0.8% humic acid had higher values than the control (72.78±3.38, 71.63±5.01 respectively). Our results indicate that 0.4% humic acid as a feed additive for carp can improve growth parameters, antioxidant capacity, and general health.


Abdel-Latif, H. M. R., & Khafaga, A. F. (2020). Natural co-infection of cultured Nile tilapia O. niloticus with Aeromonas hydrophila and Gyrodactylus cichlidarum experiencing high mortality during summer. Aquaculture Research, 51, 1880-1892. https://doi.org/10.1111/are.14538

Abdel-Wahab, A. M., El-Refaee, A. M. E., & Ammar, A. A. (2012). Effects of humic acid as feed additive in improvement of nonspecific immune response and disease resistance in common carp (C. carpio). Egyptian Journal for Aquaculture, 2-1.

Adekunle, I., & Ajuwon, O. R. (2010). Influence of humic acid derived from composted wastes of Nigeria origin on oxidative and antioxidant status of African mud catfish (C. gariepinus). Pakistan Journal of Biological Sciences, 13(17), 821-827. https://doi.org/10.3923/pjbs.2010.821.827

Alemayehu, T. A., Geremew, A., & Getahun, A. (2018). The Role of functional feed additives in tilapia nutrition. Fisheries and Aquaculture Journal, 9. https://doi.org/10.4172/2150-3508.1000249

Atamanalp, M., Ucar, A., Kocaman, E. M., & Alak, G. (2021). Evaluation of brown trout (Salmo trutta fario) fillets’ shelf life: Fed with a humic supplemented diet. Food Packaging and Shelf Life. https://doi.org/10.1016/j.fpsl.2021.100675

Blaxhall, P.C., & Daisley, K.W. (1973). Routine hematological methods for use with fish blood. Journal of Fish Biology, 5, 771-781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

Campbell, T. W., Thrall M. A., Baker D. C., DeNicola, D., Fettman M. J., Lassen E. D., Rebar A., & Weiser, G. (Eds). (2004). Veterinary Hematology and Clinical Chemistry, (1st ed.). Lippincott Williams and Wilkins Pennsylvania.

Çetin, N., Çetin, E., & Güçlü, B. K. (2006). The effect of humate and organic acids added to the ration on some haematological parameters in laying hens. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 53, 165-168.

Deng J., Lin, B., Zhang, X., Guo, L., Chen, L., Li, G., Wang, Q., Yu, C., & Mi, H. (2020). Effects of dietary sodium humate on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in genetic improvement of farmed tilapia (GIFT, O. niloticus). Aquaculture, 520, 734788. https://doi.org/10.1016/j.aquaculture.2019.734788

Esmaeili, M., Abedian Kenari, A., & Rombenso, A. (2017). Effects of fish meal replacement with meat and bone meal using garlic (Allium sativum) powder on growth, feeding, digestive enzymes and apparent digestibility of nutrients and fatty acids in juvenile rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Aquaculture Nutrition, 23, 1225–1234. https://doi.org/10.1111/anu.12491

Esmaeili, M. (2021). Blood performance: A new formula for fish growth and health. Biology, 10, 1236. https://doi.org/10.3390/biology10121236

FAO, (2022). The state of world fisheries and aquaculture 2022. Towards blue transformation. Rome, FAO. https://doi.org/10.4060/cc0461en.

Gao, Y., He, J., He, Z., Li, Z., Zhao, B., Mu, Y., Lee, J. Y., & Chu, Z. (2017). Effects of fulvic acid on growth performance and intestinal health of juvenile loach Paramisgurnus dabryanus (Sauvage). Fish Shellfish Immunology, 62, 47–56. https://doi.org/10.1016/j.fsi.2017.01.008

Goel, P., & Dhingra, M. (2021). Humic substances: Prospects for use in agriculture and medicine. In book: Humic Substances (Abdelhadi Makan, Ed) (pp. 184). https://doi.org/10.5772/intechopen.99651

Gomes de Melo, B. A., Motta, F. L., Helena, M., & Santana, A. (2015). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering, 62, 967–974. https://doi.org/10.1016/j.msec.2015.12.001

Haitzer, M., Hoss, S., Traunspurger, W., & Steinberg, C. E. W. (1998). Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms-A review. Chemosphere, 37, 1335–1362. https://doi.org/10.1016/S0045-6535(98)00117-9

Hart, S. D., Bharadwaj, A. S., & Brown, P. B. (2010). Soybean lectins and trypsin ınhibitors but not oligosaccharides or the ınteractions of factors ımpact weight gain of rainbow trout (O. mykiss). Aquaculture, 306, 310–314. https://doi.org/10.1016/j.aquaculture.2010.03.027

Heidrich, S. (2005). Prophylaktischer und therapeutischer einsatz von braunkohle-huminstoffen in der nutz- und zierfischzucht. Inaugural-dissertation veterinärmedizinische fakultät, universität leipzig.

Islam, K., Schuhmacher, A., & Gropp, J. (2005). Humic acid substances in animal agriculture. Pakistan Journal of Nutrition, 4(3), 126–134. https://doi.org/10.3923/pjn.2005.126.134

Kodama, H., Denso, & Nakagawa, T. (2007). Protection against atypical Aeromonas salmonicida Infection in carp (C. carpio L.) by oral administration of humus extract. Journal of Veterinary Medical Science, 69, 405-408. https://doi.org/10.1292/jvms.69.405

Lieke, T., Meinelt, T., Hoseinifar, S. H., Pan, B., Straus, D. L., & Steinberg, C. E. W. (2019). Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Reviews in Aquaculture, 12(2). https://doi.org/10.1111/raq.12365

Marcinčák, S., Semjon, B., Marcinčáková, D., Reitznerová, A., Mudroňová, D., Vašková, J., & Nagy, J. (2023). Humic substances as a feed supplement and the benefits of produced chicken meat. Life, 13(4), 927. https://doi.org/10.3390/life13040927

McKnight, I. M. (1966). A hematological study on the mountain whitefish, Prosopium williamsoni. Journal of the Fisheries Research, 23, 45-64. https://doi.org/10.1139/f66-005

Meinelt, T., Schreckenbach, K., Pietrock, M., Heidrich, S., & Steinberg, C. E. W. (2008). Humic Substances Part 1: Dissolved humic substances (HS) in aquaculture and ornamental fish breeding. Environmental Science and Pollution Research, 15(1), 17–22. http://dx.doi.org/10.1065/espr2007.08.448

Melo, B. A. G., Motta, F. L., & Santana, M. H. A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering, 62, 967–974. https://doi.org/10.1016/j.msec.2015.12.001

Nakagawa, J., Iwasaki, T., & Kodama, H. (2009). Protection Against Flavobacterium psychrophilum Infection (cold water disease) in ayu fish (P. altivelis) by oral administration of humus extract. Journal of Veterinary Medical Science, 71(11), 1487-1491. https://doi.org/10.1292/jvms.001487

Natt, M. P., & Herrick, C. A. (1952). A new blood diluent for counting the erythrocytes and leukocytes of the chicken. Poultry Science, 31(4), 735-738. https://doi.org/10.3382/ps.0310735

Ng W. K., & Koh C. B. (2016). The Utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Reviews in Aquaculture, 9, 342–368. https://doi.org/10.1111/raq.12141

Park Y., Lee, S., Hong, J., Kim, D., Moniruzzaman, M., & Bai, S. C. (2016). Use of probiotics to enhance growth stimulate ımmunity and confer disease resistance to Aeromonas salmonicida in rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 1-11. https://doi.org/10.1111/are.13099

Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. Covington: CTI Research, (pp. 17). https://humates.com/wp-content/uploads/2020/04/ORGANICMATTERPettit.pdf

Prokešová, M., Bušová, M., Zare, M., Tran, H.Q., Kucerová, E., Ivanova, A. P., Gebauer, T., & Stejskal, V. (2021). Effect of humic substances as feed additive on the growth performance, antioxidant status, and health condition of African catfish (C. gariepinus, Burchell 1822). Animals, 11(8), 2266. https://doi.org/10.3390/ani11082266

Rousdy, D. W., & Wijayanti, N. (2015). Hematology profile and growth respons of carp (C. carpio Linn.) on administration of humic acid from kalimantan peat soil. Prosiding Semirata, Prosiding Semirata 2015 bidang MIPA BKS‐PTN Barat, Universitas Tanjungpura Pontianak (pp. 135‐144).

Rupiasih, N. N., & Vidyasagar P. B. (2007). Humic substances: structure, function and applications. International Journal of Environment and Pollution, 5(2), 39-47. https://www.researchgate.net/publication/225303930

Sharaf, M. M., & Tag, H. M. (2011). Growth performance, gill, liver and kidney histomorphology of common carp (C. carpio) fingerlings fed humic acid supplemented diets. Egyptian Journal of Experimental Biology, 7(2), 285-294. https://www.bibliomed.org/mnsfulltext/3/3-1432005411.pdf?1717857333

Soytaş, N. (2015). Effects on survival rate and some blood parameters of Amyloodinium sp. infestation at the sea bass (D. labrax) fed on humic acid added diet. (MsC), Graduate School of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Türkiye, pp. 64.

Steinberg, C. E. W. (2003). Ecology of humic substances in freshwaters: Determinants from geochemistry to ecological niches. Springer Science & Business Media, Heidelberg (pp. 440). https://doi.org/10.1007/978-3-662-06815-1

Stevenson, F. J. (1982). Humus chemistry: Genesis, composition, reactions. Wiley, New York (pp. 443). https://doi.org/10.1021/ed072pA93.6

Thurman, E. M. (1985). Organic geochemistry of natural waters. Nijhoff, M./Junk, W. Publishers, Springer Science & Business Media (pp. 497).

Turan, F., & Turgut, M. (2020). The Effect of leonardite as feed additive on growth of goldfish (Carassius auratus L.). NESciences, 5, 184-191. https://doi.org/10.28978/nesciences.832994

Vasiliev, A. A., Tarasov, P. S., Turenko, O. Y., Matsyupa, I. O., Sadygova, M. K., Bukhovets, V. A., Zaitsev, V. V., & Kokorev, V. A. (2020). The effectiveness of using humic acids for feeding sturgeons in the conditions of a ras (Recirculation aquaculture system). Ecology, Environment and Conservation Journal, 26(2), 910-913. http://www.envirobiotechjournals.com/EEC/v26i220/EEC-67.pdf

Wang, J. L., Meng, X., Lu, R. H., Wu, C., Luo, Y. T., & Yan, X. (2015). Effects of Rehmannia glutinosa on growth performance, immunological parameters and disease resistance to Aeromonas hydrophila in common carp (C. carpio L.). Aquaculture, 435, 293–300. https://doi.org/10.1016/j.aquaculture.2014.10.004

Witeska, M., Lugowska, K., & Kondera, E. (2016). Reference values of hematological parameters for juvenile C. carpio. Bulletin of the European Association of Fish Pathologists, 36(4), 169. https://www.researchgate.net/publication/306380872_Reference_values_of_hematological_parameters_for_juvenile_Cyprinus_carpio#fullTextFileContent

Yılmaz, S., Ergün, S., & Çelik, E. Ş. (2016). Effect of dietary spice supplementations on welfare status of sea bass Dicentrarchus labrax L. Proceedings of the National Academy of Sciences India Section B: Biological Sciences, 86, 229-237. https://doi.org/10.1007/s40011-014-0444-2

Yılmaz, S. (2017). The effect of dietary cinnamic acid or Bacillus subtilis feed on growth performance and some immune parameters in rainbow trout. Doctoral dissertation, Canakkale Onsekiz Mart University, Graduate School of Natural and Applied Sciences, Türkiye (pp. 210).

Yılmaz, S, Ergün, S., & Yiğit, M. (2018a). Effects of dietary FARMARIN® XP supplement on immunological responses and disease resistance of rainbow trout (O. mykiss). Aquaculture, 496, 211-220. https://doi.org/10.1016/j.aquaculture.2018.07.024

Yılmaz, S., Ergün, S., Çelik, E. Ş., & Yiğit, M. (2018b). Effects of dietary humic acid on growth performance, haemato‐immunological and physiological responses and resistance of Rainbow trout, O. mykiss to Yersinia ruckeri. Aquaculture Research, 49(10), 3338–3349. https://doi.org/10.1111/are.13798

Yurchenko, V., & Morozov, A. (2022). Responses of hepatic biotransformation and antioxidant enzymes in Japanese medaka (Oryzias latipes) exposed to humic acid. Fish Physiology and Biochemistry, 48, 1-13. https://link.springer.com/article/10.1007/s10695-021-01034-4

Zhang, J., Huang, M., Feng, J., Chen, Y., Li, M., & Chang, X. (2021). Effects of dietary Bacillus licheniformis on growth performance, intestinal morphology, intestinal microbiome, and disease resistance in common carp (C. carpio L.). Aquaculture International, 29, 1343–1358. https://link.springer.com/article/10.1007/s10499-021-00701-w

Zhou, X., Tian, Z., Wang, Y., & Li, W. (2010). Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiology and Biochemistry, 36, 501-509. https://doi.org/10.1007/s10695-009-9320-z




How to Cite

ÇOBAN, N., HAGA, Y., MAITA, M., FUTAMI, K., YILMAZ, S., ERGUN, S., YIGIT, M., SEONG, T., OKTAY, O., & KATAGIRI, T. (2024). Effects of humic acid supplemented feeds on growth performance, hematological parameters and antioxıdant capacity on common carp (Cyprinus carpio): Humic acid supplemented diets for Common carp. MARINE REPORTS (MAREP), 3(1), 63–76. https://doi.org/10.5281/zenodo.12518162



Research Article