Relocation, attachment and survival of zebra mussels (Dreissena polymorpha) on aluminum, chrome, iron, galvanized-iron, zinc, copper and copper-alloy substrates
DOI:
https://doi.org/10.5281/zenodo.6594179Keywords:
Attachment, relocation, survival, zebra mussel, material selection, substrate typeAbstract
The attachment strength, survival and relocation of zebra mussels (Dreissena polymorpha) on eight different substrates (glass, Al, Cr, Fe, galvanized-Fe, Cu, Zn, Cu-alloy) were measured. Glass substrate attracted zebra mussels, however, other materials tested were less attractive and nearly 50% of settled individuals lost attachment on Fe and Al substrates, and about 70% on Cr and galvanized Fe (gal-Fe) during the time of the experiment. The adhesion strength of mussels on different substrates decreased in the order of glass>Fe>Al>Cr>gal-Fe>Cu=Zn=Cu-alloy, with negative correlation between relocation behavior that showed an increase in the order of glass>gal-Fe>Cr>Al>Fe. All mussels were dislodged on Cu, Cu-alloy and Zn substrates by day-28. Survival of zebra mussels followed a trend with attachment strength with rates from high to low in the order of glass>Al>Fe>gal-Fe>Cr>Cu=Zn=Cu-alloy. Findings from this study provide evidence that the surface properties relevant for the adhesive conditions are influenced by the materials, and substrates made of Cu, Zn, and Cu-alloy performed best against zebra mussel adhesion, which eventually could be applied as lining material or through sheet replacement in dam lakes or hydroelectric power plants in the effort against zebra mussel infestation on underwater structures.
The attachment strength, survival and relocation of zebra mussels (Dreissena polymorpha) on eight different substrates (glass, Al, Cr, Fe, galvanized-Fe, Cu, Zn, Cu-alloy) were measured. Glass substrate attracted zebra mussels, however, other materials tested were less attractive and nearly 50% of settled individuals lost attachment on Fe and Al substrates, and about 70% on Cr and galvanized Fe (gal-Fe) during the time of the experiment. The adhesion strength of mussels on different substrates decreased in the order of glass>Fe>Al>Cr>gal-Fe>Cu=Zn=Cu-alloy, with negative correlation between relocation behavior that showed an increase in the order of glass>gal-Fe>Cr>Al>Fe. All mussels were dislodged on Cu, Cu-alloy and Zn substrates by day-28. Survival of zebra mussels followed a trend with attachment strength with rates from high to low in the order of glass>Al>Fe>gal-Fe>Cr>Cu=Zn=Cu-alloy. Findings from this study provide evidence that the surface properties relevant for the adhesive conditions are influenced by the materials, and substrates made of Cu, Zn, and Cu-alloy performed best against zebra mussel adhesion, which eventually could be applied as lining material or through sheet replacement in dam lakes or hydroelectric power plants in the effort against zebra mussel infestation on underwater structures.
References
Ackerman, J.D., Ethier, C. R., Allen, D. G., & Spelt, J. K. (1992). Investigation of zebra mussel adhesion strength using a rotating disk. Journal of Environmental Engineering, 118(5), 708-724.
Ackerman, J. D., Cottrell, C. M., Ethier, C. R., Allen, D. G., & Spelt, J. K. (1996). Attachment strength of zebra mussels on natural, polymeric, and metallic materials. Journal of Environmental Engineering, 122(2), 141-148.
Aldred, N., Scardino, A., Cavaco, A., de Nys, R., & Clare, A. S. (2010). Attachment strength is a key factor in the selection of surfaces by barnacle cyprids (Balanus amphitrite) during settlement. Biofouling 26, 287-299. https://doi.org/10.1080/ 08927010903511626
Aldridge, D. C., Elliott, P. & Moggridge, G. D. (2004). The recent and rapid spread of the zebra mussel (Dreissena polymorpha) in Great Britain. Biological Conservation, 119, 253-261. https://doi.org/10.1016/j.biocon.2003.11.008
Arendsen LP, Thakar R, Sultan AH. 2019. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clinical Microbiology Reviews, 32, e00125-18. https://doi.org/10.1128/CMR.00125-18
Berntsson, K. M., Andreasson, H., Jonsson, P. R., Larsson, L., Ring, K., Petronis, S., & Gatenholm, P. (2000). Reduction of barnacle recruitment on micro−textured surfaces: analysis of effective topographic characteristics and evaluation of skin friction. Biofouling, 16(2-4), 245-261. https://doi.org/10.1080/08927010009378449
Berntsson, K. M., Jonsson, P. R., Larsson, A. I., & Holdt, S. (2004). Rejection of unsuitable substrata as a potential driver of aggregated settlement in the barnacle Balanus improvisus. Marine Ecology Progress Series, 275, 199-210. https://doi.org/10.3354/meps275199
Boelman S.F., Neilson F.M., Dardeau E.A., & Cross Jr.T. (1997). Zebra mussel (Dreissena polymorpha) control handbook for facility operators (Zebra Mussel Research Program. Report EL-97-1, 1st ed., 20314-1000). U.S. Army Corps of Engineers, Washington. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1005.6304&rep=rep1&type=pdf
Chase R., & McMahon R. F. (1995). Effects of starvation at different temperatures on dry tissue and dry shell weights in the zebra mussel, Dreissena polymorpha (Pallas) (Technical Report EL-95-4, pp. 21). U.S. Army Corps of Engineers, U.S. Army Engineer Waterways Experiment Station. https://apps.dtic.mil/sti/pdfs/ADA291463.pdf
Clarke, M. (1999). The effect of food availability on byssogenesis by the zebra mussel (Dreissena polymorpha Pallas). Journal of Molluscan Studies, 65(3), 327-333. https://doi.org/10.1093/MOLLUS/65.3.327
Colvin, M. E., Pierce, C. L., & Stewart, T. W. (2015). A food web modeling analysis of a Midwestern, USA eutrophic lake dominated by non-native Common carp and Zebra mussels. Ecological Modelling, 312, 26-40. http://dx.doi.org/10.1016/j.ecolmodel.2015.05.016
Fisher, E. C., Castelli, V. J., Rodgers, S. D., & Bleile, H. R. (1984). Technology for control of marine biofouling – a review. In J. D. Costlow, & R. C. Tipper (Eds.), Marine biodeterioration: an interdisciplinary study (pp. 261-298). Naval Institute Press, Annapolis, Md.
Grass, G., Rensing, C., & Solioz, M. (2011). Metallic copper as an antimicrobial surface. Applied Environmental Microbiology, 77(5), 1541-1547. https://doi.org/10.1128/AEM.02766-10
Hills, J. M., & Thomason, J. C. (1998). The effect of scales of surface roughness on the settlement of barnacle (Semibalanus balanoides) cyprids. Biofouling, 12, 57–69. https://doi.org/10.1080/08927019809378346
James, B. D., Kimmins, K. M., Nguyen, M. T., Lausch, A. J., & Sone, E. D. (2021). Attachment of zebra and quagga mussel adhesive plaques to diverse substrates. Scientific Reports, 11, 23998. https://doi.org/10.1038/s41598-021-03227-6
Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. (2002). Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In E. Leppakoski, S. Gollasch, & S. Olenin (Eds.), Invasive aquatic species of Europe: distribution, impacts and management (pp. 433-446). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9956-6_43
Kilgour, B. W., & Mackie, G. L. (1993). Colonization of different construction materials by the Zebra mussel (Dreissena polymorpha). In T. F. Nalepa, & D. W. Schloesser (Eds.), Zebra Mussels Biology, Impacts, and Control (pp. 167-173). CRC Press Lewis Publishing, Boca Raton.
Kobak, J. (2001). Light, gravity and conspecifics as cues to site selection and attachment behaviour of juvenile and adult Dreissena polymorpha Pallas, 1771, Journal of Molluscan Studies, 67(2), 183-189. https://doi.org/10.1093/mollus/67.2.183
Kobak, J., & Nowacki, P. (2007). Light-related behaviour of zebra mussel (Dreissena polymorpha, Bivalvia). Fundamental and Applied Limnology (Archiv für Hydrobiologie), 169, 341-352. https://doi.org/10.1127/1863-9135/2007/0169-0341
Kobak, J., Poznańska, M., & Kakareko, T. (2009). Effect of attachment status and aggregation on the behaviour of the zebra mussel Dreissena polymorpha, Journal of Molluscan Studies, 75(2), 119-126. https://doi.org/10.1093/mollus/eyn046
Kobak, J. (2004). Recruitment and small-scale spatial distribution of Dreissena polymorpha (Bivalvia) on artificial materials. Fundamental and Applied Limnology (Archiv für Hydrobiologie), 160, 25-44. https://doi.org/10.1127/0003-9136/2004/0160-0025
Kobak, J. (2010). Attachment strength of Dreissena polymorpha on artificial substrates. In G. Van der Velde, S. Rajagopal, A. Bij de Vaate (Eds.), The zebra mussel in Europe (Chapter 34, pp 349-354). Backhuys Publishers, Leiden/Margraf Publishers, Weikersheim.
Kobak, J., Kłosowska-Mikułan, E., & Wiśniewski, R. (2002). Impact of copper substrate on survival, mobility and attachment strength of adult Dreissena polymorpha (Pall.). Folia Malacologica, 10(2), 91-97. https://doi.org/10.12657/folmal.010.010
Kraak, M. H. S., Toussaint, M., Lavy, D., & Davids, C. (1994). Short-term effects of metals on the filtration rate of the zebra mussel Dreissena polymorpha. Environmental Pollution, 84(2), 139-143. https://doi.org/10.1016/0269-7491(94)90096-5
Kusku, H. (2022, March 4). Relocation of zebra mussels on galvanized iron substrate [Video]. YouTube. https://www.youtube.com/watch?v=doHz6fEoBfI
Lewandowski, K. (1982). The role of early developmental stages in the dynamics of Dreissena polymorpha (Pall.) (Bivalvia) populations in lakes. II. Settling of larvae and the dynamics of number of sedentary individuals. Ekologia Polska, 30, 223-286.
Lewandowski, K. (2001). Development of populations of Dreissena polymorpha (Pall.) in lakes. Folia Malacologica, 9(4), 171-213. https://doi.org/10.12657/folmal.009.020
Lopes, T. M., Barcarolli, I. F., DeOliveira, C. B., Desouza, M. M., & Bianchini, A. (2011). Mechanisms of copper accumulation in isolated mantle cells of the marine clam Mesodesma mactroides. Environmental Toxicology and Chemistry, 30(7), 1586–1592. https://doi.org/10.1002/etc.527
Lovell, S. J., Stone, S. F., & Fernandez, L. (2006). The economic impacts of aquatic invasive species: a review of the literature. Agricultural Economics Research Review, 35, 195-208.
Mackie, G. L., Gibbons, W. N., Muncaster, B. W., & Gray, I. M. (Eds.). (1989). The zebra mussel, Dreissena polymorpha: a synthesis of European experiences and a preview for North America. Water Resources Branch Great Lakes Section, Ontario.
Madenjian, C. P., Bunnell, D. B., Warner, D. M., Pothoven, S., Fahnenstiel, G., Nalepa, T., Vanderploeg, H., Tsehaye, I., Claramunt, R., & Clark, R. (2015). Changes in the Lake Michigan food web following dreissenid mussel invasions: A synthesis. Journal of Great Lakes Research, 41, 217-231.
Marsden, E. J. (1992). Zebra mussel study on Lake Michigan (Aquatic Ecology Technical Report 91/13, Federal aid project F-119-R). Department of Conservation, Center for Aquatic Ecology, Illinois.
Martel, A. L., Pathy, D. A., Madill, J. B., Renaud, C., Dean, S., & Kerr, S. (2001). Decline and regional extirpation of freshwater mussels (Unionidae) in a small river system invaded by Dreissena polymorpha: The Rideau River, 1993–2000. Canadian Journal of Zoology, 79(12), 2181-2191. https://doi.org/10.1139/z01-181
Nalepa, T. F., & Schloesser, D. W. (Eds.). (2014). Quagga and Zebra mussels: biology, impacts, and control (2nd ed., pp. 815). CRC Press, Taylor & Francis Group, Boca Raton, Fl, USA.
Noyce, J. O., Michels, H., & Keevil, C. W. (2007). Inactivation of influenza A virus on copper versus stainless steel surfaces. Applied Environmental Microbiology, 73, 2748-2750. https://doi.org/10.1128/AEM.01139-06
O’Neill, C. R. (1997). Economic impact of zebra mussels – results of the 1995 National Zebra Mussel Information Clearinghouse study. Great Lakes Research Review, 3, 35-42.
Petersen, D. S., Gorb, S. N., & Heepe, L. (2020) The Influence of Material and Roughness on the Settlement and the Adhesive Strength of the Barnacle Balanus improvisus in the Baltic Sea. Frontiers in Marine Science, 7, 664. https://doi.org/10.3389/fmars.2020.00664
Pillai, A. G. G., & Ravindran, K. (1988). Crevice corrosion in seawater of aluminum alloys under fouling deposits. In M. F. Thompson, R. Sarojini, & R. Nagabhushanam (Eds.). Marine Biodeterioration (pp. 739-746). Oxford and IBH Publishing, New Delhi, India.
Pollux, B., Minchin, D., Van Der Velde, G., Van Alen, T., Yeo, S., Van Der Staay, M., & Hackstein, J. (2003). Zebra mussels (Dreissena polymorpha) in Ireland, AFLP-fingerprinting and boat traffic both indicate an origin from Britain. Freshwater Biology, 48, 1127-1139.
Race, T., & Miller, A. C. (1992). Thermal sprayed coatings. Zebra Mussel Technical Notes Collection (ZMR-2-01, pp. 1-4). U.S. Army Engineer Research & Development Center, Vicksburg, MS.
Raimondi, P. T. (1988). Rock type affects settlement, recruitment, and zonation of the barnacle Chthamalus anisopoma Pilsbury. Journal of Experimental Marine Biology and Ecology, 123, 253-267. https://doi.org/10.1016/0022-0981(88)90046-9
Rajagopal, S., Van Der Velde, G. & Jenner, H.A. (2002). Does status of attachment influence chlorine survival time of zebra mussel, Dreissena polymorpha exposed to chlorination? Environmental Toxicology and Chemistry, 21, 342-346. https://doi.org/10.1002/etc.5620210216
Rajagopal, S., Van Der Velde, G., Van Der Gaag, M. & Jenner, H. A. (2005). Byssal detachment underestimates tolerance of mussels to toxic compounds. Marine Pollution Bulletin, 50(1), 20-29. https://doi.org/10.1016/j.marpolbul.2004.08.015
Robinson, D. C. E., Knowler, D., Kyobe, D., & De La Cueva Bueno, P. (2013). Preliminary damage estimates for selected invasive fauna in B.C. Report prepared for Ecosystems Branch, B.C (ESSA Technologies Ltd., pp. 62). Ministry of Environment, Victoria, Vancouver, B.C., Canada. https://testwww.for.gov.bc.ca/hra/invasive-species/Publications/BC_Invasives_Final_Report.pdf
Schloesser, D. W., Nalepa, T. F., & Mackie, G. L. (1996). Zebra mussel infestation of unionid bivalves (Unionidae) in North America. American Zoologist, 36, 300-310. https://doi.org/10.1093/icb/36.3.300
Schumacher, J. F., Aldred, N., Callow, M. E., Finlay, J. A., Callow, J. A., Clare, A. S., & Brennan, A. B. (2007). Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Biofouling 23, 307-317. https://doi.org/10.1080/08927010701393276
Smircich, M. G., Strayer, D. L., & Schultz, E. T. (2017). Zebra mussel (Dreissena polymorpha) affects the feeding ecology of early stage striped bass (Morone saxatilis) in the Hudson River estuary. Environmental Biology of Fishes, 100, 395-406. https://doi.org/10.1007/s10641-016-0555-0
Strayer, D. L. (1999). Effects of alien species on freshwater mollusks in North America. Journal of the North American Benthological Society, 18(1), 74-98. https://doi.org/1468010
Strayer, D. L., Smith, L. C., & Hunter, D. C. (1998). Effects of the Zebra mussel (Dreissena polymorpha) invasion on the macrobenthos of the freshwater tidal Hudson River. Canadian Journal of Zoology, 76(3), 419-425. https://doi.org/10.1139/cjz-76-3-419
Toomey, M. B., Mccabe, D., & Marsden, J. E. (2002). Factors affecting the movement of adult zebra mussels (Dreissena polymorpha), Journal of the North American Benthological Society, 21(3), 468-475. https://doi.org/10.2307/1468483
Van Diepen, J., & Davids, C. (1986). Zebra Mussels and Polystyrene. Hydrobiology Bulletin, 19, 179-181.
Vanderploeg, H. A., Nalepa, T. F., Jude, D. J., Mills, E., Holeck, K., Liebig, J. Grigorovich, I., & Ojaveer, H. (2002). Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59(7), 1209-1228. https://doi.org/10.1139/f02-087
Walz, R. (1973). Studies on the Biology of Dreissena polymorpha in Lake Constance. Archieves of Hydrobiology Supplements, 42, 452-482.
Wethey, D. S. (1986). Ranking of settlement cues by barnacle larvae: influence of surface contour. Bulletin of Marine Science, 39(2), 393-400.
Yigit, M., Celikkol, B., Yilmaz, S., Bulut, M., Ozalp, B., Dwyer, R. L., Maita, M., Kizilkaya, B., Yigit, Ü., Ergün, S., Gürses, K., & Buyukates, Y. (2018a). Bioaccumulation of trace metals in Mediterranean mussels (Mytilus galloprovincialis) from a fish farm with copper-alloy mesh pens and potential risk assessment. Human and Ecological Risk Assessment: An International Journal, 24(2), 465-481. https://doi.org/10.1080/10807039.2017.1387476
Yigit, M., Dwyer, R. L., Celikkol, B., Yilmaz, S., Bulut, M., Büyükates, Y., Kesbic, O. S., Acar, U., Özalp, H. B., Maita, M., & Ergün, S. (2018b). Human exposure to trace elements via farmed and cage aggregated wild Axillary seabream (Pagellus acarne) in a copper alloy cage site in the Northern Aegean Sea. Journal of Trace Elements in Medicine and Biology, 50, 356-361. https://doi.org/10.1016/j.jtemb.2018.07.020
Yigit, M., Celikkol, B., Özalp, H. B., Bulut, M., Dwyer, R. L., Yilmaz, S., Maita, M., & Büyükates, Y. (2018c). Comparision of copper alloy mesh with conventional nylon nets in offshore cage farming of Gilthead seabream (Sparus aurata). Aquaculture Studies, 18(1), 57-65, http://doi.org/10.4194/2618-6381-v18_1_07
Yigit, M., Dwyer, R., Yilmaz, S., Bulut, M., Ozalp, B., Buyukates, Y., Ergun, S., Celikkol, B., Kizilkaya, B., Yigit, Ü., & Maita, M. (2020). Health Risks Associated with Trace Metals in Gilthead Seabream from Copper Alloy and Antifouling-Coated Polymer Nets. Thalassas: An International Journal of Marine Sciences, 36, 95-101. https://doi.org/10.1007/s41208-019-00186-8
Zhu, B., Fitzgerald, D. G., Mayer, C. M., Rudstam, L. G., & Mills, E. L. (2006). Alteration of ecosystem function by Zebra mussels in Oneida Lake: Impacts on submerged macrophytes. Ecosystems, 9(6), 1017-1028. https://doi.org/10.1007/s10021-005-0049-y