Evaluation of the impact of different size and shape polyethylene microplastic in Nile tilapia (Oreochromis niloticus)
Microplastic in Nile tilapia
DOI:
https://doi.org/10.5281/zenodo.10182777Keywords:
Polyethylene, microparticles, hematology, DNA damage, Nile tilapiaAbstract
Plastic waste that is discharged into the aquatic environment can eventually break down into different size particles known as microplastics (MP). MPs have become a significant concern due to their potential negative effects on fish species. In this study, the effects of sublethal concentrations of various size and shape polyethylene microplastics (PE-MPs) on Nile tilapia were investigated on numerous levels, including hematological and DNA damage in blood. For this purpose, the phsysiological effects of freshwater fish species Nile tilapia (Oreochromis niloticus) exposed to PE-MPs at control (0 mg/L), 5 mg/L, 10 mg/L, 25 mg/L and 50 mg/L for 14 days were investigated. In Nile tilapia PE-MPs exposure caused a significant decrease in hematological parameters. DNA damage in blood cells of fish exposed to PE-MPs was significantly higher than in the control group. Consequently, our findings show that PE-MPs affect many physiological parameters by causing oxidative stress-induced DNA damage in adult fish, and MPs should be considered a potent environmental pollutant when the rate in water is more than 10 mg/L for Nile tilapia.References
Avio, C. G., Gorbi, S., & Regoli, F. (2015). Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: first observations in commercial species from Adriatic Sea. Marine Environmental Research, 111, 18-26. https://doi.org/10.1016/j.marenvres.2015.06.014
Banaei, M., Forouzanfar, M., & Jafarinia, M. (2022). Toxic effects of polyethylene microplastics on transcriptional changes, biochemical response, and oxidative stress in common carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 261, 109423. https://doi.org/10.1016/j.cbpc.2022.109423
Barría, C., Brandts, I., Tort, L., Oliveira, M., & Teles, M. (2020). Effect of nanoplastics on fish health and performance: A review. Marine Pollution Bulletin, 151, 110791. https://doi.org/10.1016/j.marpolbul.2019.110791
Blaxhall, P. C., & Daisley, K. W. (1973). Routine haematological methods for use with fish blood. Journal of Fish Biology, 5(6), 771-781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x
Bradford, M. F., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of microgram quantities of protein utilizing the principle of protein dye binding. Biochemistry, 72, 248-258. https://doi.org/10.1016/0003-2697(76)90527-3
Burke, M. D., & Mayer, R. T., (1974). Ethoxyrezorufin: Direct Fluorometric Assay of Microsomal O-dealkylation which is Preferentially Induced by 3- Methycholanthrene, Drug Metabolism and Disposition, 2(6), 583-588.
Cunha, C., Lopes, J., Paulo, J., Faria, M., Kaufmann, M., Nogueira, N., & Cordeiro, N. (2020). The effect of microplastics pollution in microalgal biomass production: A biochemical study. Water Research, 186, 116370. https://doi.org/10.1016/j.watres.2020.116370
da Costa Araújo, A. P., da Luz, T. M., Rocha, T. L., Ahmed, M. A. I., e Silva, D. D. M., Rahman, M. M., & Malafaia, G. (2022). Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: Perspective study of genotoxicity, mutagenicity, and redox unbalance. Journal of Hazardous Materials, 432, 128691. https://doi.org/10.1016/j.jhazmat.2022.128691
Dimitriadi, A., Papaefthimiou, C., Genizegkini, E., Sampsonidis, I., Kalogiannis, S., Feidantsis, K., Bobori, D. C., Kastrinaki, G., Koumoundouros, G., Lampropoulou, D. A., Kyzas, G.Z., & Bikiaris, D. N. (2021). Adverse effects polystyrene microplastics exert on zebrafish heart–Molecular to individual level. Journal of Hazardous Materials, 416, 125969. https://doi.org/10.1016/j.jhazmat.2021.125969
Ergün, S., Vazirzadeh, A., Yigit, M., Yilmaz, S., Erdem, M., Erdem, B., & Buyukates, Y. (2023). Evaluation of Microplastic in Caged Fish from Turkish and Iranian Waters with Health Risk Assessment for Human Consumers. Medical Science Forum, 19(1), 9. https://doi.org/10.3390/msf2023019009
Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS one, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
Fazio, F. (2019). Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture, 500, 237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030
Garcia, A. G., Suárez, D. C., Li, J., & Rotchell, J. M. (2021). A comparison of microplastic contamination in freshwater fish from natural and farmed sources. Environmental Science and Pollution Research, 28, 14488-14497. https://doi.org/10.1007/s11356-020-11605-2
Gómez-Mendikute, A., Etxeberria, A., Olabarrieta, I., & Cajaraville, M. P. (2002). Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo (a) pyrene. Marine Environmental Research, 54(3-5), 431-436. https://doi.org/10.1016/S0141-1136(02)00177-0
Guerrera, M. C., Aragona, M., Porcino, C., Fazio, F., Laurà, R., Levanti, M., Giupseppe, M., Germanà, G., Abbate, F., & Germanà, A. (2021). Micro and nano plastics distribution in fish as model organisms: histopathology, blood response and bioaccumulation in different organs. Applied Sciences, 11(13), 5768. https://doi.org/10.3390/app11135768
Gürses, R. K. (2023a). Hidden part of Iceberg about plastic pollution: leakages and plankton, acritical perspective. Marine Reports, 2(1), 68-72. https://doi.org/10.5281/zenodo.8050788
Gürses, R. K.(2023b). A critical brief reviewon plastic pollution in the Sea of Marmara. Marine Reports, 2(1), 63-67. https://doi.org/10.5281/zenodo.8050762
Haghi, B. N., & Banaee, M. (2017). Effects of micro-plastic particles on paraquat toxicity to common carp (Cyprinus carpio): biochemical changes. International Journal of Environmental Science and Technology, 14(3), 521-530. https://doi.org/10.1007/s13762-016-1171-4
Hamed, M., Soliman, H. A., Badrey, A. E., & Osman, A. G. (2021). Microplastics induced histopathological lesions in some tissues of tilapia (Oreochromis niloticus) early juveniles. Tissue and Cell, 71, 101512. https://doi.org/10.1016/j.tice.2021.101512
Hamed, M., Soliman, H. A., Osman, A. G., & Sayed, A. E. D. H. (2019). Assessment the effect of exposure to microplastics in Nile Tilapia (Oreochromis niloticus) early juvenile: I. blood biomarkers. Chemosphere, 228, 345-350. https://doi.org/10.1016/j.chemosphere.2019.04.153
Hamed, M., Soliman, H. A., Osman, A. G., & Sayed, A. E. D. H. (2020). Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. Environmental Science and Pollution Research, 27, 14581-14588. https://doi.org/10.1007/s11356-020-07898-y
Hamed, M., Soliman, H. A., Osman, A. G., & Sayed, A. E. D. H. (2019). Assessment the effect of exposure to microplastics in Nile Tilapia (Oreochromis niloticus) early juvenile: I. blood biomarkers. Chemosphere, 228, 345-350. https://doi.org/10.1016/j.chemosphere.2019.04.153
Hanvey, J. S., Lewis, P. J., Lavers, J. L., Crosbie, N. D., Pozo, K., & Clarke, B. O. (2017). A review of analytical techniques for quantifying microplastics in sediments. Analytical Methods, 9(9), 1369-1383. https://doi.org/10.1039/C6AY02707E
Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J., & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-64464-9
Iheanacho, S. C., & Odo, G. E. (2020). Neurotoxicity, oxidative stress biomarkers and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 232, 108741. https://doi.org/10.1016/j.cbpc.2020.108741
Iversen, M., Finstad, B., McKinley, R. S., & Eliassen, R. A. (2003). The efficacy of metomidate, clove oil, Aqui-S™ and Benzoak® as anaesthetics in Atlantic salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity. Aquaculture, 221(1-4), 549-566. https://doi.org/10.1016/S0044-8486(03)00111-X
Ivleva, N. P., Wiesheu, A. C., & Niessner, R. (2017). Microplastic in aquatic ecosystems. Angewandte Chemie International Edition, 56(7), 1720-1739. https://doi.org/10.1002/anie.201606957
Jovanović, B., Gökdağ, K., Güven, O., Emre, Y., Whitley, E. M., & Kideys, A. E. (2018). Virgin microplastics are not causing imminent harm to fish after dietary exposure. Marine pollution bulletin, 130, 123-131. https://doi.org/10.1016/j.marpolbul.2018.03.016
Kaloyianni, M., Dimitriadi, A., Ovezik, M., Stamkopoulou, D., Feidantsis, K., Kastrinaki, G., Gallios, G., Tsiaoussis, I., Koumoundouros, G., & Bobori, D. (2020). Magnetite nanoparticles effects on adverse responses of aquatic and terrestrial animal models. Journal of hazardous materials, 383, 121204. https://doi.org/10.1016/j.jhazmat.2019.121204
Katzenberger, T. D., & Thorpe, K. L. (2015). Assessing the impact of exposure to microplastics in fish: Evidence Report-SC120056.
Liu, Y., Qiu, X., Xu, X., Takai, Y., Ogawa, H., Shimasaki, Y., & Oshima, Y. (2021). Uptake and depuration kinetics of microplastics with different polymer types and particle sizes in Japanese medaka (Oryzias latipes). Ecotoxicology and Environmental Safety, 212, 112007. https://doi.org/10.1016/j.ecoenv.2021.112007
Merga, L. B., Redondo-Hasselerharm, P. E., Van den Brink, P. J., & Koelmans, A. A. (2020). Distribution of microplastic and small macroplastic particles across four fish species and sediment in an African lake. Science of the Total Environment, 741, 140527. https://doi.org/10.1016/j.scitotenv.2020.140527
Park, T. J., Lee, S. H., Lee, M. S., Lee, J. K., Lee, S. H., & Zoh, K. D. (2020). Occurrence of microplastics in the Han River and riverine fish in South Korea. Science of The Total Environment, 708, 134535. https://doi.org/10.1016/j.scitotenv.2019.134535
Rosenberg, C. E., Peri, S. I., Arrieta, M. A., Fink, N. E., & Salibián, A. (1998). Red blood cell osmotic fragility in Bufo arenarum exposed to lead. Archives of Physiology and Biochemistry, 106(1), 19-24. https://doi.org/10.1076/apab.106.1.19.4390
Sarijan, S., Azman, S., Said, M. I. M., & Jamal, M. H. (2021). Microplastics in freshwater ecosystems: a recent review of occurrence, analysis, potential impacts, and research needs. Environmental Science and Pollution Research, 28, 1341-1356. https://doi.org/10.1007/s11356-020-11171-7
Savoca, S., Matanović, K., D’Angelo, G., Vetri, V., Anselmo, S., Bottari, T., Mancuso, M., Kužir, S., Spanò, N., Capillo, G., Di Paola, D., Valić, D., & Gjurčević, E. (2021). Ingestion of plastic and non-plastic microfibers by farmed gilthead sea bream (Sparus aurata) and common carp (Cyprinus carpio) at different life stages. Science of The Total Environment, 782, 146851. https://doi.org/10.1016/j.scitotenv.2021.146851
Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5(3), 375-386. https://doi.org/10.1007/s40572-018-0206-z
Wintrobe, M. M. (1962). Clinical hematology. Academic Medicine, 37(1), 78.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ümit ACAR, Yavuz ERDEN, Sevilay GÜNAY, Osman Sabri KESBİÇ, Sevdan YILMAZ
This work is licensed under a Creative Commons Attribution 4.0 International License.