Effect of fish size on nitrogen utilization in Japanese flounder, Paralichthys olivaceus (Temminck & Schlegel)

Nitrogen utilization in Japanese flounder

Authors

DOI:

https://doi.org/10.5281/zenodo.10182862

Keywords:

Nitrogen utilization, fish size, ammonia excretion, Japanese flounder, Paralichthys olivaceus

Abstract

Information on nitrogen utilization of varying size of Japanese flounder is essential in the formulation of cost-effective and low-pollutant diets. To do that, total ammonia nitrogen (TAN) excretion (mg-N/100 g fish) of different size of Japanese flounder (small size, SS = 13.5 ± 0.40 g; medium size, SM = 41.2 ± 1.15 g; large size, SL = 119.0 ± 2.74 g) was monitored every 2 h following 24 h after feeding with the diets containing 40, 46, 52, 58 or 64% protein. Results indicated that the TAN excretion (mg-N/100 g fish/d) of SS and SM were significantly (P<0.05) higher than that of the SL in each dietary protein level. The only peak on post-prandial TAN excretion occurred 2 - 4 h after feeding in SS and SM. However, the fish of SL tended to reach to the peak with slightly longer time than those of SS and SL. TAN excretion significantly (P<0.05) increased with increasing nitrogen (protein) intake in all fish size. At the same protein level, TAN excretion decreased with increasing fish size. No interactive effect between dietary protein level and fish size was observed on TAN excretion. The relationship between nitrogen intake and TAN excretion was identified by linear regression in each size, and intercepts of the equations represented the ration of ingested nitrogen diverted to ammonia. SLshowed more effective nitrogen utilization compared to SS and SM. The results indicated that nitrogen utilization of Japanese flounder was size-dependent. In conclusion, to optimize the protein level in diets for Japanese flounder, size dependent absolute dietary protein requirement must be established.

References

Alam, M. S., Teshima, S., Koshio, S., Uyan, O., & Ishikawa, M. (2003). Effects of dietary protein and lipid levels on growth, and body composition of juvenile, Paralichthys olivaceus, fed diets containing intact proteins or crystalline amino acids. Journal of Applied Aquaculture, 14, 115-131. https://doi.org/10.1300/J028v14n03_09

Allen Davis, D., & Arnold, C. R. (1998). The design, management, and production of a recirculating raceway system for the production of marine shrimp. Aquacultural Engineering, 17(3). https://doi.org/10.1016/S0144-8609(98)00015-6

Bai, S. C., Cha, Y. T., & Wang, X. (2001). A Preliminary study on the dietary protein requirement of larval Japanese flounder Paralichthys olivaceus. North American Journal of Aquaculture, 63, 92-98. https://doi.org/10.1577/1548-8454(2001)063

Ballestrazzi, R., Lanari, D., D`Agaro, E., & Mion, A. (1994). The effect of dietary protein level and source on growth, body composition, total ammonia and reactive phosphate excretion of growing sea bass (Dicentrarchus labrax). Aquaculture, 127, 197-206. https://doi.org/10.1016/0044-8486(94)90426-X

Beamish, F. W. H., & Thomas, E. (1984). Effects of dietary protein and lipid on nitrogen losses in rainbow trout, Salmo gairdneri, Aquaculture, 41, 359-367. https://doi.org/10.1016/0044-8486(84)90203-5

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. https://doi.org/10.1139/o59-099

Dostad, A., Servais, F., Metailler, R., Huelvan, C., & Desbruyeres, E. (1996). Comparison of nitrogenous losses in five teleost fish species. Aquaculture, 141, 107-127. https://doi.org/10.1016/0044-8486(95)01209-5

Engin, K., & Carter, C. G. (2001). Ammonia and urea excretion rates of juvenile Australian short-finned ell (Anguilla australis australis) as influenced by dietary protein level. Aquaculture, 194, 123-136. https://doi.org/10.1016/S0044-8486(00)00506-8

Gallardo-Cigarro, F. J., Koshio, S., Hayasawa, H., & Oshida, K. (1999). Effect of bovine lactoferrin on performance of Japanese flounder Paralichthys olivaceus. Lactoferrin: Structure, Function and Application. In K. Shimazaki, T. Hiroyuki, T. Mamoru, K. Tamotsu, & J. P. Perraudin (Eds.), Proceedings of the 4th International Conference on Lactoferrin: Structure, Function and Application (pp. 443-449), Sapporo-Japan, 18-22 May 1999, Elsevier.

Garcia-Alcazar, A., Abellan, E., Dehesa, M. R. L., Arizcun, M., Delgado, J., & Ortega, A. (1994). Pre-growout and growout results for sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) with different fat/protein ratios. Boletín del Instituto Español de Oceanografía, 10, 191-201.

Gristale-Helland, B., & Helland, S. J. (1997). Replacement of protein by fat and carbohydrate in diets for Atlantic salmon (Salmo salar) at the end of freshwater stage. Aquaculture, 152, 167-180.

Helland, S. J., & Gristale-Helland, B. (1998). The influence of replacing fish meal in the diet with fish oil on growth, feed utilization and body composition of Atlantic salmon (Salmo salar) during the smoltification period. Aquaculture, 162, 1-10. https://doi.org/10.1016/S0044-8486(98)00206-3

Jobling, M. (1981). Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice Pleuronectes platessa L. Journal of Fish Biology, 18, 87-96.

Jobling, M. (1994). Fish Bioenergetics. Fish and Fisheries Series 13. Chapman and Hall, London.

Kikuchi, K., Takeda, S., Honda, H., & Kiyono, M. (1991). Effect of feeding on nitrogen excretion of Japanese flounder Paralichthys olivaceus. Nippon Suisan Gakkaishi, 57, 2059-2064.

Kikuchi, K., Takeda, S., Honda, H., & Kiyono, M. (1992). Nitrogenous excretion of juvenile and young Japanese flounder, Paralichthys olivaceus. Nippon Suisan Gakkaishi, 58, 2329-2333. https://doi.org/10.11233/aquaculturesci1953.45.81

Kikuchi, K. (1995). Nitrogen excretion rate of Japanese flounder – a criterion for designing close circulating culture systems. Israeli Journal of Aquaculture Bamidgeh, 47, 112-118.

Kikuchi, K., & Furuta, T. (2000). Utilization of dietary lipid in young and immature flounder. Abiko Research Laboratory Report, No. U99039, Japan.

Kikuchi, K., Sugita, H., & Watanabe, T. (2000). Effect of dietary protein and lipid levels on growth and body composition of Japanese flounder. Suisanzoshoku, 48, 537-543.

Kikuchi, K., & Takeda, S. (2001). Present status of research and production of Japanese flounder, Paralichthys olivaceus in Japan. Journal of Applied Aquaculture, 11, 165-175. https://doi.org/10.1300/J028v11n01_12

Kim, K. W., Wang, X. J., & Bai, S. C. (2002). Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquaculture Research, 33, 673-679. https://doi.org/10.1046/j.1365-2109.2002.00704.x

Kim, K., Wang, X., & Bai, S. C. (2003). Reevaluation of the dietary protein requirement of Japanese flounder Paralichthys olivaceus. Journal of the World Aquaculture Society, 34, 133-139. https://doi.org/10.1111/j.1749-7345.2003.tb00049.x

Lee, S. M., Cho, S. H., & Kim, J. (2000). Effects of feeding frequency and dietary energy level on growth and body composition of juvenile flounder, Paralichthys olivaceus (Temminck & Schlegel). Aquaculture Research, 31, 917-921. https://doi.org/10.1046/j.1365-2109.2000.00505.x

Lee, S. M., Park, C. S., & Bang, C. (2002). Dietary protein requirement of young Japanese flounder Paralichthys olivaceus fed isocaloric diets. Fisheries Science, 68, 158-164. https://doi.org/10.1046/j.1444-2906.2002.00402.x

Leung, K. M. Y., Chu, J. C. W., & Wu, R. S. S. (1999). Interacting effects of water temperature and dietary protein levels on post-prandial ammonia excretion by the areolated grouper Epinephelus areolatus (Forskal). Aquaculture Research, 30, 793-798.

Lovell, R. T. (1989). Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York. http://dx.doi.org/10.1007/978-1-4757-1174-5

Medale, F., Brauge, C., Valle, F., & Kaushik, S.J. (1995). Effects of dietary protein/energy ratio, ration size, dietary energy source and water temperature on nitrogen excretion in rainbow trout. Water Science Technology, 31, 185-194. https://doi.org/10.1016/0273-1223(95)00438-S

Nordgarden, U., Hemre, G. L., & Hansen, T. (2002). Growth and body composition of Atlantic salmon (Salmo salar L.) parr and smolt fed diets varying in protein and lipid contents. Aquaculture, 207, 65-78. https://doi.org/10.1016/S0044-8486(01)00750-5

Person-Le Ruyet, J., Chartois, H., & Quemener L. (1995). Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquaculture, 136, 181-194. https://doi.org/10.1016/0044-8486(95)01026-2

Porter, C. B., Krom, M. D., Robbins, M. G., Brickell, L., & Davidson A. (1987). Ammonia excretion and total N budget for gilthead seabream (Sparus aurata) and its effect on water quality conditions. Aquaculture, 66, 287-297. https://doi.org/10.1016/0044-8486(87)90114-1

Ramnarine, I. W., Pirie, J. M., Johnstone, A. D. F., & Swith G. W. (1987). The influence of ration size and feeding frequency on ammonia excretion by juvenile Atlantic cod, Gadus morhua L. Journal of Fish Biology, 31, 545-559. http://dx.doi.org/10.1111/j.1095-8649.1987.tb05257.x

Rychly, J. (1980). Nitrogen balance in trout II. Nitrogen excretion and retention after feeding diets with varying protein and carbohydrate levels. Aquaculture, 20, 343-350. https://doi.org/10.1016/0044-8486(80)90095-2

Sumagaysay-Chavoso, N. S. (2003). Nitrogen and phosphorus digestibility and excretion of different-sized groups of milkfish (Chanos chanos Forsskal) fed formulated and natural food-based diets. Aquaculture Research, 34, 407-418. https://doi.org/10.1046/j.1365-2109.2003.00824.x

Sveier, H., Raae, A. J., & Lied, E. (2000). Growth and protein turnover in Atlantic salmon (Salmo salar L.); the effect of dietary protein level and protein particle size. Aquaculture, 185, 101-120. https://doi.org/10.1016/S0044-8486(99)00344-0

Uyan, O., Koshio, S., Ishikawa, M., & Yokoyama, S. (2022). Effects of feeding frequency on growth performance sand nutrient digestibility of juvenile Japanese flounder, Paralichthys olivaceus (Temminck & Schlegel), under varied dietary protein levels. Marine Reports, 1(2), 110-121. https://doi.org/10.5281/zenodo.73941026

Wedemeyer, G. A. (1996). Physiology of Fish in Intensive Culture Systems. Chapmen & Hall, New York. https://doi.org/10.1007/978-1-4615-6011-1

Wilson, R. P. (2002). Amino Acids and Proteins. In J. E. Halver, & R. W. Hardy (Eds.), Fish Nutrition (3rd ed., pp. 824). Elsevier Science.

Wood, C. M. (1993). Ammonia and urea metabolism and excretion. The Physiology of Fishes. (D. H. Evans, Ed.). CRC Press, Marine Science Series.

Downloads

Published

2023-12-05

How to Cite

UYAN, O., KOSHIO, S., ISHIKAWA, M., & YOKOYAMA, S. (2023). Effect of fish size on nitrogen utilization in Japanese flounder, Paralichthys olivaceus (Temminck & Schlegel): Nitrogen utilization in Japanese flounder. MARINE REPORTS (MAREP), 2(2), 105–117. https://doi.org/10.5281/zenodo.10182862

Issue

Section

Research Article