Evaluation of the efficacy of a bivalent inactivated whole-cell vaccine against Edwardsiella tarda and Vibrio anguillarum in Tilapia (Oreochromis niloticus)

Bivalent vaccine for tilapia

Authors

DOI:

https://doi.org/10.5281/zenodo.18001946

Keywords:

Tilapia, Edwardsiella tarda, Vibrio anguillarum, whole-cell vaccine, indirecELISA, bactericidal activity

Abstract

Bacterial co-infections constrain tilapia aquaculture. We evaluated the efficacy of an adjuvant-free, formalin-inactivated bivalent whole-cell vaccine combining Edwardsiella tarda and Vibrio anguillarum in Nile tilapia. Fish received the bivalent formulation, matched monovalent vaccines, or phosphate-buffered saline. Systemic and skin-mucus immunoglobulin M levels were quantified by indirect enzyme-linked immunosorbent assay, and serum and mucus bactericidal activity were assessed at 1, 7, 14, and 21-days post-vaccination. At 21 days post-vaccination, fish were challenged intraperitoneally with E. tarda or V. anguillarum, or both. By 14–21 days post-vaccination, the bivalent vaccine induced strong systemic and mucosal immunoglobulin M responses and increased bactericidal activity; across readouts, responses were significantly greater than (p < 0.05) or equal to (p > 0.05) the corresponding monovalent vaccine. After challenge with E. tarda, 21-day post-challenge survival was higher in the bivalent (54.17%, Relative Percent Survival = 38.9%) than in the monovalent (29.17%) or control (25.00%) group (both p < 0.05). After V. anguillarum challenge, survival was similar in the bivalent (87.50%, Relative Percent Survival = 78.6%) and monovalent (75.00%) groups (p > 0.05), both of which showed greater survival than the control (41.67%) (p < 0.05). After mixed E. tarda + V. anguillarum challenge, survival was significantly higher (50.00%, Relative Percent Survival = 47.8%) in the bivalent group than in the control group (4.17%) (p < 0.05). No acute adverse reactions or behavioral abnormalities were observed. These findings indicate that an adjuvant-free bivalent vaccine elicits robust mid- to late-phase humoral responses and provides broad protection without evidence of antigenic interference, supporting a practical polyvalent strategy where E. tarda and V. anguillarum co-circulate.

References

Cao, J., Futami, K., Maita, M., Nakanishi, T., & Katagiri, T. (2023). Adjuvant effect of allogeneic blood in vaccines against edwardsiellosis in ginbuna crucian carp Carassius auratus langsdorfii. Fish & Shellfish Immunology, 143, 109133. https://doi.org/10.1016/j.fsi.2023.109133

Frans, I., Michiels, C. W., Bossier, P., Willems, K. A., Lievens, B., & Rediers, H. (2011). Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. Journal of fish diseases, 34(9), 643-661. https://doi.org/10.1111/j.1365-2761.2011.01279.x

Gallage, S., Katagiri, T., Endo, M., Futami, K., Endo, M., & Maita, M. (2016). Influence of moderate hypoxia on vaccine efficacy against Vibrio anguillarum in Oreochromis niloticus (Nile tilapia). Fish & shellfish immunology, 51, 271-281. https://doi.org/10.1016/j.fsi.2016.02.024

Haenen, O. L., Dong, H. T., Hoai, T. D., Crumlish, M., Karunasagar, I., Barkham, T., ... & Bondad‐Reantaso, M. G. (2023). Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Reviews in Aquaculture, 15, 154-185. https://doi.org/10.1111/raq.12743

Holten Andersen, L., Dalsgaard, I., Nylén, J., Lorenzen, N., & Buchmann, K. (2012). Determining vaccination frequency in farmed rainbow trout using Vibrio anguillarum O1 specific serum antibody measurements. PLOS ONE, 7(11), e49672. https://doi.org/10.1371/journal.pone.0049672

Hong, G. E., Kim, D. G., Bae, J. Y., Ahn, S. H., Bai, S. C., & Kong, I. S. (2007). Species-specific PCR detection of the fish pathogen, Vibrio anguillarum, using the amiB gene, which encodes N-acetylmuramoyl-L-alanine amidase. FEMS microbiology letters, 269(2), 201-206. https://doi.org/10.1111/j.1574-6968.2006.00618.x

Jonsson, A., López Porras, A., Nørstebø, S. F., Guslund, N. C., Sørum, H., Qiao, S. W., & Johansen, F. E. (2025). Protective IgM mediated immunity against Vibrio anguillarum in Atlantic cod with evolutionary losses of MHC class II and CD4. Frontiers in Immunology, 16, 1579541. https://doi.org/10.3389/fimmu.2025.1579541

Kuang, B., Xiao, K., Wang, W., You, F., Xiao, P., & Chen, S. (2022). Different antigen ratio in bivalent vaccine can affect immunological activation and protection against Aeromonas salmonicida and Vibrio anguillarum in Atlantic salmon. Fish & Shellfish Immunology, 128, 644-650. https://doi.org/10.1016/j.fsi.2022.08.033

Li, M., Wu, M., Sun, Y., & Sun, L. (2022). Edwardsiella tarda TraT is an anti-complement factor and a cellular infection promoter. Communications Biology, 5(1), 637. https://doi.org/10.1038/s42003-022-03587-3

Mohd Ali, N. S., Saad, M. Z., Azmai, M. N. A., Salleh, A., Zulperi, Z. M., Manchanayake, T., ... & Md Yasin, I. S. (2023). Immunogenicity and efficacy of a feed-based bivalent vaccine against streptococcosis and motile aeromonad septicemia in red hybrid tilapia (Oreochromis sp.). Animals, 13(8), 1346. https://doi.org/10.3390/ani13081346

Nikoskelainen, S., Verho, S., Järvinen, S., Madetoja, J., Wiklund, T., & Lilius, E.-M. (2007). Multiple whole bacterial antigens in polyvalent vaccine may result in inhibition of specific responses in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 22(3), 206–217. https://doi.org/10.1016/j.fsi.2006.04.010

Palti, Y. (2011). Toll-like receptors in bony fish: from genomics to function. Developmental & Comparative Immunology, 35(12), 1263-1272. https://doi.org/10.1016/j.dci.2011.03.006

Pasnik, D. J., Evans, J. J., & Klesius, P. H. (2005). Duration of protective antibodies and correlation with survival in Nile tilapia Oreochromis niloticus following Streptococcus agalactiae vaccination. Diseases of Aquatic Organisms, 66(2), 129–134. https://doi.org/10.3354/dao066129

Pasnik, D. J., Evans, J. J., & Klesius, P. H. (2006). Passive immunization of Nile tilapia (Oreochromis niloticus) provides significant protection against Streptococcus agalactiae. Fish & Shellfish Immunology, 21(4), 365–371. https://doi.org/10.1016/j.fsi.2006.01.001

Rivas, A. V., Dos Santos, A. G. V., de Souza, A. B., Bueno Junior, G., de Souza, G. F., de Souza, E. M., ... & Viana, K. F. (2023). Bivalent vaccine against Streptococcus agalactiae and Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus): a laboratory-phase and large-scale study. Animals, 13(21), 3338. https://doi.org/10.3390/ani13213338

Rombout, J. H., Yang, G., & Kiron, V. (2014). Adaptive immune responses at mucosal surfaces of teleost fish. Fish & Shellfish Immunology, 40(2), 634-643. https://doi.org/10.1016/j.fsi.2014.08.020

Salinas, I. (2015). The mucosal immune system of teleost fish. Biology, 4(3), 525-539. https://doi.org/10.3390/biology4030525

Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., & Van Boeckel, T. P. (2020). Global trends in antimicrobial use in aquaculture. Scientific reports, 10(1), 21878. https://doi.org/10.1038/s41598-020-78849-3

Shoemaker, C. A., LaFrentz, B. R., & Klesius, P. H. (2012). Bivalent vaccination of sex reversed hybrid tilapia against Streptococcus iniae and Vibrio vulnificus. Aquaculture, 354, 45-49. https://doi.org/10.1016/j.aquaculture.2012.04.033

Sunyer, J. O. (2013). Fishing for mammalian paradigms in the teleost immune system. Nature immunology, 14(4), 320-326. https://doi.org/10.1038/ni.2549

Sun, Y., Liu, C. S., & Sun, L. (2011). A multivalent killed whole cell vaccine induces effective protection against Edwardsiella tarda and Vibrio anguillarum. Fish & Shellfish Immunology, 31(4), 595–599. https://doi.org/10.1016/j.fsi.2011.06.025

Sui, Z. H., Xu, H., Wang, H., Jiang, S., Chi, H., & Sun, L. (2017). Intracellular trafficking pathways of Edwardsiella tarda: from clathrin-and caveolin-mediated endocytosis to endosome and lysosome. Frontiers in cellular and infection microbiology, 7, 400. https://doi.org/10.3389/fcimb.2017.00400

Tammas, I., Bitchava, K., & Gelasakis, A. I. (2024). Advances in Vaccine Adjuvants for Teleost Fish: Implications for Aquatic Welfare and the Potential of Nanoparticle-Based Formulations. Vaccines, 12(12), 1347. https://doi.org/10.3390/vaccines12121347

Tziouvas, H., & Varvarigos, P. (2021). Intensity scale of side effects in European sea bass (Dicentrarchus labrax) post intraperitoneal injection with commercial oil-adjuvanted vaccines. Bulletin of the European Association of Fish Pathologists, 41(3), 103-110. https://doi.org/10.48045/001c.28222

Xu, Z., Parra, D., Gómez, D., Salinas, I., Zhang, Y. A., von Gersdorff Jørgensen, L., ... & Sunyer, J. O. (2013). Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proceedings of the National Academy of Sciences, 110(32), 13097-13102. https://doi.org/10.1073/pnas.1304319110

Yamasaki, M., Araki, K., Maruyoshi, K., Matsumoto, M., Nakayasu, C., Moritomo, T., ... & Yamamoto, A. (2015). Comparative analysis of adaptive immune response after vaccine trials using live attenuated and formalin-killed cells of Edwardsiella tarda in ginbuna crucian carp (Carassius auratus langsdorfii). Fish & shellfish immunology, 45(2), 437-442. https://doi.org/10.1016/j.fsi.2015.04.038

Yeh, D. W., Liu, Y. L., Lo, Y. C., Yuh, C. H., Yu, G. Y., Lo, J. F., ... & Chuang, T. H. (2013). Toll-like receptor 9 and 21 have different ligand recognition profiles and cooperatively mediate activity of CpG-oligodeoxynucleotides in zebrafish. Proceedings of the National Academy of Sciences, 110(51), 20711-20716. https://doi.org/10.1073/pnas.130527311

Zhang, L., Ni, C., Xu, W., Dai, T., Yang, D., Wang, Q., ... & Liu, Q. (2016). Intramacrophage infection reinforces the virulence of Edwardsiella tarda. Journal of bacteriology, 198(10), 1534-1542. https://doi.org/10.1128/jb.00978-15

Downloads

Published

2025-12-21

How to Cite

LIU, Z., ENDO, M., & FUTAMI, K. (2025). Evaluation of the efficacy of a bivalent inactivated whole-cell vaccine against Edwardsiella tarda and Vibrio anguillarum in Tilapia (Oreochromis niloticus): Bivalent vaccine for tilapia. MARINE REPORTS (MAREP), 4(2), 116–129. https://doi.org/10.5281/zenodo.18001946

Issue

Section

Research Article

Most read articles by the same author(s)