From biowaste to blue food: insect-driven aquaculture

Insect-driven aquaculture

Authors

DOI:

https://doi.org/10.5281/zenodo.17702811

Keywords:

Aquafeed innovation, Bio-waste conversion, Chitin, Circular bioeconomy, Insect meal, Sustainable protein sources

Abstract

Aquaculture has gained significant momentum in recent years in meeting global protein demand. As one of the principal factors, the latest technological innovations, have also brought about significant challenges. These problems, including high costs, supply constraints and environmental risks arising from continued dependence on traditional feed ingredients such as fish meal and soybean meal have accelerated the search for sustainable and innovative protein sources. Correspondingly, i nsects, historically part of both human and animal diets, have re-emerged as viable feed resources . Although insect meals are quite rich in terms of high protein, essential amino acids, fatty acids, minerals and bioactive components, which are among the most important advantages of fish feeds in aquatic diets, they also bring about difficulties such as digestibility and variability in micronutrient composition due to their high fat and chitin content. However, technological innovations such as defatting, enzymatic hydrolysis, fermentation and modification of rearing substrates used to combat these difficulties increase the digestibility and productivity of insects and further increase their use in aquaculture feeds. In addition, safety of feeds, better waste-management, regulative changes and public acceptance can be considered as other factors shaping the future of insect feeds in the sector. As a result, increasing insect production capacity and making innovations in processing technologies will significantly improve nutritional content functional properties of insect-based feeds. This process will enable the conversion of low-value biological waste into high-value blue food products, making circular bioeconomy principles practically applicable and will put aquaculture as a resilient and sustainable food production system with a low environmental footprint in the future.

References

Abro, Z., Macharia, I., Mulungu, K., Subramanian, S., Tanga, C. M., & Kassie, M. (2022). The potential economic benefits of insect-based feed in Uganda. Frontiers in Insect Science, 2:968042. https://doi.org/10.3389/finsc.2022.968042

Adámková, A., Mlček, J., Kouřimská, L., Borkovcová, M., Bušina, T., Adámek, M., Bednářová, M., & Krajsa, J. (2017). Nutritional potential of selected insect species reared on the Island of Sumatra. International Journal of Environmental Research and Public Health, 14(5), 521. https://doi.org/10.3390/ijerph14050521

Addeo, N. F., Scivicco, M., Vozzo, S., Bovera, F., Asiry, K. A., Alqurashi, S., Cacciola, N. A., & Severino, L. (2024). Mineral profile and heavy metals bioaccumulation in black soldier fly (Hermetia illucens, L.) larvae and frass across diverse organic substrates. Italian Journal of Animal Science, 23(1), 179–188. https://doi.org/10.1080/1828051X.2024.2302845

Agbohessou, P. S., Mandiki, R., Mes, W., Blanquer, A., Gérardy, M., Garigliany, M.-M., Lambert, J., Cambier, P., Tokpon, N., Lalèyè, P. A., & Kestemont, P. (2024). Effect of fatty acid-enriched black soldier fly larvae meal combined with chitinase on the metabolic processes of Nile tilapia. British Journal of Nutrition, 131(8), 1326–1341. https://doi.org/10.1017/S0007114523003008

Alfiko, Y., Xie, D., Astuti, R. T., Wong, J., & Wang, L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquaculture and Fisheries, 7(2), 166–178. https://doi.org/10.1016/j.aaf.2021.10.004

Ameixa, O. M. C. C., Pinho, M., Domingues, M. R., & Lillebø, A. I. (2023). Bioconversion of olive oil pomace by black soldier fly increases eco-efficiency in solid waste stream reduction producing tailored value-added insect meals. PLOS ONE, 18(7), e0287986. https://doi.org/10.1371/journal.pone.0287986

Amorim, H. C. S., Ashworth, A. J., Arsi, K., Rojas, M. G., Morales-Ramos, J. A., Donoghue, A., & Robinson, K. (2024). Insect frass composition and potential use as an organic fertilizer in circular economies. Journal of Economic Entomology, 117(4), 1261–1268. https://doi.org/10.1093/jee/toad234

Andrade, R. C., Alves, J. C., & Roselino, M. N. (2021). A review of Zophobas morio: Chemical, nutritional and functional characteristics. Revista Científica Multidisciplinar Núcleo do Conhecimento, 39, 533–548. https://doi.org/10.37885/210203200

Auzins, A., Leimane, I., Reissaar, R., Brobakk, J., Sakelaite, I., Grivins, M., & Zihare, L. (2024). Assessing the socio-economic benefits and costs of insect meal as a fishmeal substitute in livestock and aquaculture. Animals, 14(10), 1461. https://doi.org/10.3390/ani14101461

Barroso, F. G., de Haro, C., Sánchez-Muros, M.-J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422–423, 193–201. https://doi.org/10.1016/j.aquaculture.2013.12.024

Belghit, I., Liland, N. S., Gjesdal, P., Biancarosa, I., Menchetti, E., Li, Y., Waagbø, R., Krogdahl, Å., & Lock, E.-J. (2019). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503, 609–619. https://doi.org/10.1016/j.aquaculture.2018.12.032

Belperio, S., Cattaneo, A., Nannoni, E., Sardi, L., Martelli, G., Dabbou, S., & Meneguz, M. (2024). Assessing substrate utilization and bioconversion efficiency of black soldier fly (Hermetia illucens) larvae: Effect of diet composition on growth and development temperature. Animals, 14(9), 1340. https://doi.org/10.3390/ani14091340

Boyd, C. E., & McNevin, A. A. (2022). Overview of aquaculture feeds: Global impacts of ingredient production, manufacturing, and use. In D. Allen Davis (Ed.), Feed and feeding practices in aquaculture (2nd ed., pp. 3–28). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821598-2.00003-5

Brahmacharimayum, P. D., Singh, S. K., Biswas, P., Debbarma, R., Debbarma, S., Devi, A. G., Waikhom, G., Patel, A. B., Singh, S. B., Singh, T. B., & Sharma, B. A. (2025). Valorising rice straw waste: Pre-treatment and insect bioconversion as a bridge for waste management and sustainable feed production. Discover Sustainability, 6(1), 395. https://doi.org/10.1007/s43621-025-00939-x

Calvert, C. C., Martin, R. D., & Morgan, N. O. (1969). House fly pupae as food for poultry. Journal of Economic Entomology, 62(4), 938–939. https://doi.org/10.1093/jee/62.4.938

Carpentier, J., Martin, C., Luttenschlager, H., Deville, N., Ferrara, D., Purcaro, G., Blecker, C., Francis, F., & Caparros Megido, R. (2024). Common soluble carbohydrates affect the growth, survival, and fatty acid profile of black soldier fly larvae Hermetia illucens (Stratiomyidae). Scientific Reports, 14(1), 28157. https://doi.org/10.1038/s41598-024-75730-5

da Silva, R. M., Köhler, A., Schneider, R. C. S., de Vargas, D. P., Köhler, A. L., da Costa e Silva, D., & Soares, J. (2024). Proximate and fatty acid profile analysis of Tenebrio molitor and Zophobas morio using different killing methods. Food Chemistry, 445, 138719. https://doi.org/10.1016/j.foodchem.2024.138719

Dhiman, A., & Prabhakar, P. K. (2021). Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials. Journal of Food Engineering, 292, 110248. https://doi.org/10.1016/j.jfoodeng.2020.110248

EFSA NDA Panel. (2022). (EFSA Panel on Nutrition, Novel Foods and Food Allergens), Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch-Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Marchelli, R., Neuhäuser-Berthold, M., Poulsen, M., Prieto Maradona, M., Schlatter, J. R., van Loveren, H., Ververis, E., & Knutsen, H. K. (2022). Safety of frozen and freeze-dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 20(7), e07325. https://doi.org/10.2903/j.efsa.2022.7325

Eggink, K. M., Pedersen, P. B., Lund, I., & Dalsgaard, J. (2022). Chitin digestibility and intestinal exochitinase activity in Nile tilapia and rainbow trout fed different black soldier fly larvae meal size fractions. Aquaculture Research, 53(16), 5536–5546. https://doi.org/10.1111/are.16035

Fantatto, R. R., Mota, J., Ligeiro, C., Vieira, I., Guilgur, L. G., Santos, M., & Murta, D. (2024). Exploring sustainable alternatives in aquaculture feeding: The role of insects. Aquaculture Reports, 37, 102228. https://doi.org/10.1016/j.aqrep.2024.102228

Fines, B. C., & Holt, G. J. (2010). Chitinase and apparent digestibility of chitin in the digestive tract of juvenile cobia, Rachycentron canadum. Aquaculture, 303(1), 34–39. https://doi.org/10.1016/j.aquaculture.2010.03.010

Finke, M. D. (2002). Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21(3), 269–285. https://doi.org/10.1002/zoo.10031

Fowles, T. M., & Nansen, C. (2020). Insect-based bioconversion: value from food waste. In E. Närvänen, N. Mesiranta, M. Mattila, & A. Heikkinen (Eds.), Food Waste Management: Solving the Wicked Problem (pp. 321–346). Springer International Publishing. https://doi.org/10.1007/978-3-030-20561-4_12

Foysal, M. J., & Gupta, S. K. (2022). A systematic meta-analysis reveals enrichment of Actinobacteria and Firmicutes in the fish gut in response to black soldier fly (Hermetia illucens) meal-based diets. Aquaculture, 549, 737760. https://doi.org/10.1016/j.aquaculture.2021.737760

Foysal, M. J., Fotedar, R., Siddik, M. A. B., Chaklader, M. R., & Tay, A. (2021). Lactobacillus plantarum in black soldier fly (Hermetia illucens) meal modulates gut health and immunity of freshwater crayfish (Cherax cainii). Fish & Shellfish Immunology, 108, 42–52. https://doi.org/10.1016/j.fsi.2020.11.020

Gasco, L., Acuti, G., Bani, P., Dalle Zotte, A., Danieli, P. P., De Angelis, A., Fortina, R., Marino, R., Parisi, G., Piccolo, G., Pinotti, L., Prandini, A., Schiavone, A., Terova, G., Tulli, F., & Roncarati, A. (2020). Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Italian Journal of Animal Science, 19(1), 360–372. https://doi.org/10.1080/1828051X.2020.1743209

Gasco, L., Caimi, C., Trocino, A., Lussiana, C., Oddon, S. B., Malfatto, V., Anedda, R., Serra, G., Biasato, I., Schiavone, A., Gai, F., & Renna, M. (2022). Digestibility of defatted insect meals for rainbow trout aquafeeds. Journal of Insects as Food and Feed, 8(11), 1385-1400. https://doi.org/10.3920/JIFF2021.0160

Gasco, L., Józefiak, A., & Henry, M. (2024). Beyond the protein concept: Health aspects of using edible insects on animals. Journal of Insects as Food and Feed, 7(5), 715-742. https://doi.org/10.3920/JIFF2020.0077

Gasco, L., Oddon, S. B., Vandenberg, G.W., Veldkamp, T., & Biasato, I. (2023). Factors affecting the decision-making process of using insect-based products in animal feed formulations. Journal of Insects as Food and Feed, 10(10), 1707-1718. https://doi.org/10.3920/JIFF2022.0164

Habte-Tsion, H.-M., Hawkyard, M., Sealey, W. M., Bradshaw, D., Meesala, K.-M., & Bouchard, D. A. (2024). Effects of fishmeal substitution with mealworm meals (Tenebrio molitor and Alphitobius diaperinus) on the growth, physiobiochemical response, digesta microbiome, and immune genes expression of Atlantic salmon (Salmo salar). Aquaculture Nutrition, 2024, 6618117. https://doi.org/10.1155/2024/6618117

Hamam, M., D’Amico, M., & Di Vita, G. (2024). Advances in the insect industry within a circular bioeconomy context: A research agenda. Environmental Sciences Europe, 36(1), 29. https://doi.org/10.1186/s12302-024-00861-5

Hasan, I., Gai, F., Cirrincione, S., Rimoldi, S., Saroglia, G., & Terova, G. (2023b). Chitinase and insect meal in aquaculture nutrition: A comprehensive overview of the latest achievements. Fishes, 8(12), 607. https://doi.org/10.3390/fishes8120607

Hasan, I., Rimoldi, S., Saroglia, G., & Terova, G. (2023a). Sustainable fish feeds with insects and probiotics positively affect freshwater and marine fish gut microbiota. Animals, 13(10), 1633. https://doi.org/10.3390/ani13101633

Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science and Technology, 203, 1–22. https://doi.org/10.1016/j.anifeedsci.2015.03.001

Huyben, D., Vidaković, A., Werner Hallgren, S., & Langeland, M. (2019). High-throughput sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture, 500, 485–491. https://doi.org/10.1016/j.aquaculture.2018.10.034

Islam, Md. M., & Yang, C.-J. (2017). Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poultry Science, 96(1), 27–34. https://doi.org/10.3382/ps/pew220

Jayanegara, A., Gustanti ,Rinda, Ridwan ,Roni, & Widyastuti, Y. (2020). Fatty acid profiles of some insect oils and their effects on in vitro bovine rumen fermentation and methanogenesis. Italian Journal of Animal Science, 19(1), 1310–1317. https://doi.org/10.1080/1828051X.2020.1841571

Kang, K.-Y., Jeong, B.-G., Kim, J.-H., & Park, K.-W. (2025). Enhanced antioxidant properties of saccharomyces-fermented defatted Tenebrio molitor larvae extract: A sustainable alternative protein source. Fermentation, 11(5), 272. https://doi.org/10.3390/fermentation11050272

Kee, P. E., Cheng, Y.-S., Chang, J.-S., Yim, H. S., Tan, J. C. Y., Lam, S. S., Lan, J. C.-W., Ng, H. S., & Khoo, K. S. (2023). Insect biorefinery: A circular economy concept for biowaste conversion to value-added products. Environmental Research, 221, 115284. https://doi.org/10.1016/j.envres.2023.115284

Kewuyemi, Y. O., Kesa, H., Chinma, C. E., & Adebo, O. A. (2020). Fermented edible insects for promoting food security in Africa. Insects, 11(5), 283. https://doi.org/10.3390/insects11050283

Kim, T.-K., Yong, H. I., Kim, Y.-B., Kim, H.-W., & Choi, Y.-S. (2019). Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Science of Animal Resources, 39(4), 521–540. https://doi.org/10.5851/kosfa.2019.e53

Kim, J., Kurniawan, H., Faqeerzada, M. A., Kim, G., Lee, H., Kim, M. S., Baek, I., & Cho, B. K. (2023). Proximate content monitoring of black soldier fly larval (Hermetia illucens) dry matter for feed material using short-wave infrared hyperspectral imaging. Food Science of Animal Resources,43(6), 1150–1169. https://doi.org/10.5851/kosfa.2023.e33

Klunder, H. C., Wolkers-Rooijackers, J., Korpela, J. M., & Nout, M. J. R. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26(2), 628–631. https://doi.org/10.1016/j.foodcont.2012.02.013

Kroeckel, S., Harjes, A.-G. E., Roth, I., Katz, H., Wuertz, S., Susenbeth, A., & Schulz, C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute — Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 345–352. https://doi.org/10.1016/j.aquaculture.2012.08.041

Kulma, M., Kouřimská, L., Homolková, D., Božik, M., Plachý, V., & Vrabec, V. (2020). Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. Journal of Food Composition and Analysis, 92, 103570. https://doi.org/10.1016/j.jfca.2020.103570

Kuntadi, K., Adalina, Y., & Maharani, K. E. (2018). Nutritional compositions of six edible insects in Java. Indonesian Journal of Forestry Research, 5(1), 57–68. https://doi.org/10.59465/ijfr.2018.5.1.57-68

Kurečka, M., Kulma, M., Petříčková, D., Plachý, V., & Kouřimská, L. (2021). Larvae and pupae of Alphitobius diaperinus as promising protein alternatives. European Food Research and Technology, 247(10), 2527–2532. https://doi.org/10.1007/s00217-021-03807-w

Liceaga, A. M. (2019). Approaches for utilizing insect protein for human consumption: effect of enzymatic hydrolysis on protein quality and functionality. Annals of the Entomological Society of America, 112(6), 529–532. https://doi.org/10.1093/aesa/saz010

Lisboa, H. M., Nascimento, A., Arruda, A., Sarinho, A., Lima, J., Batista, L., Dantas, M. F., & Andrade, R. (2024). Unlocking the potential of insect-based proteins: sustainable solutions for global food security and nutrition. Foods, 13(12), 1846. https://doi.org/10.3390/foods13121846

Lock, E. R., Arsiwalla, T., & Waagbø, R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquaculture Nutrition, 22(6), 1202–1213. https://doi.org/10.1111/anu.12343

Lock, E.-J., Biancarosa, I., & Gasco, L. (2018). Insects as raw materials in compound feed for aquaculture. In A. Halloran, R. Flore, P. Vantomme, & N. Roos (Eds.), Edible Insects in Sustainable Food Systems (pp. 263–276). Springer International Publishing. https://doi.org/10.1007/978-3-319-74011-9_16

Madau, F. A., Arru, B., Furesi, R., & Pulina, P. (2020). Insect farming for feed and food production from a circular business model perspective. Sustainability, 12(13), 5418. https://doi.org/10.3390/su12135418

Magee, K., Halstead, J., Small, R., & Young, I. (2021). Valorisation of organic waste by-products using black soldier fly (Hermetia illucens) as a bio-convertor. Sustainability, 13(15), 8345. https://doi.org/10.3390/su13158345

Mastoraki, M., Paudel, K., Biasato, I., Oddon, S. B., Caimi, C., Gasco, L., & Chatzifotis, S. (2024). Impact of processing technologies on insect meal digestibility in rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax). Journal of Insects as Food and Feed, 11(17), 49-60. https://doi.org/10.1163/23524588-00001425

Meijer, N., Safitri, R. A., Tao, W., & Hoek-Van den Hil, E. F. (2025). Review: European Union legislation and regulatory framework for edible insect production – Safety issues. Animal, 101468. https://doi.org/10.1016/j.animal.2025.101468

Meng, L., Ma, L., Xu, J., Rong, K., Peng, N., & Zhao, S. (2023). Effect of enzyme-assisted fermentation on quality, safety, and microbial community of black soldier fly larvae (Hermetia illucens L.) as a novel protein source. Food Research International, 174, 113624. https://doi.org/10.1016/j.foodres.2023.113624

Mertenat, A., Diener, S., & Zurbrügg, C. (2019). Black soldier fly biowaste treatment – Assessment of global warming potential. Waste Management, 84, 173–181. https://doi.org/10.1016/j.wasman.2018.11.040

Mlček, J., Adámková, A., Adámek, M., Borkovcová, M., Bednářová, M., & Knížková, I. (2019). Fat from Tenebrionidae bugs – Sterols content, fatty acid profiles, and cardiovascular risk indexes. Polish Journal of Food and Nutrition Sciences, 69(3), 247–254. https://doi.org/10.31883/pjfns/109666

Mohan, K., Rajan, D. K., Ganesan, A. R., Divya, D., Johansen, J., & Zhang, S. (2023). Chitin, chitosan and chitooligosaccharides as potential growth promoters and immunostimulants in aquaculture: A comprehensive review. International Journal of Biological Macromolecules, 251, 126285. https://doi.org/10.1016/j.ijbiomac.2023.126285

Moon, S. J., & Lee, J. W. (2015). Current views on insect feed and its future. Entomological Research, 45(6), 283–285. https://doi.org/10.1111/1748-5967.12138

Naveed, M., Mateen, A., Dureshahwar, Majeed, W., Naeem, M., Khattab, Y., Hedfi, A., Ansir, F., & Ali, M. B. (2023). Efficacy of an insect-based diet with addition of probiotics on growth, proximate composition, enzymatic efficiency, and immune response of Nile tilapia. Aquaculture Nutrition, 2023(1), 5557931. https://doi.org/10.1155/2023/5557931

Nogales-Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., Kierończyk, B., & Józefiak, A. (2019). Insect meals in fish nutrition. Reviews in Aquaculture, 11(4), 1080–1103. https://doi.org/10.1111/raq.12281

Nunes, A. J. P., Sá, M. V. C., Browdy, C. L., & Vazquez-Anon, M. (2014). Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture, 431, 20–27. https://doi.org/10.1016/j.aquaculture.2014.04.003

Park, Kwan-Ho, Choe, Yeong-Cheol, Nam, Seong-Hui, Kim, Seong Hyeon, Kim, Sinyoung, Ma, Youngjoo, & Nho, Sikab. (2013). Nutritional value of black soldier fly, Hermetia illucens (Diptera: Stratiomyidae) as a feed supplement for fish. Journal of Sericultural and Entomological Science, 51(2), 95–98. https://doi.org/10.7852/JSES.2013.51.2.95

Phaengphairee, P., Boontiam, W., Wealleans, A., Hong, J., & Kim, Y. Y. (2023). Dietary supplementation with full-fat Hermetia illucens larvae and multi-probiotics, as a substitute for antibiotics, improves the growth performance, gut health, and antioxidative capacity of weaned pigs. BMC Veterinary Research, 19(1), 7. https://doi.org/10.1186/s12917-022-03550-8

Pinotti, L., & Ottoboni, M. (2021). Substrate as insect feed for bio-mass production. Journal of Insects as Food and Feed, 7(5), 585-596. https://doi.org/10.3920/JIFF2020.0110

Rajendran, K., Surendra, K. C., Tomberlin, J. K., & Khanal, S. K. (2018). Insect-based biorefinery for bioenergy and bio-based products. In T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, & S. K. Khanal (Eds.), Waste Biorefinery (22: 657–669). Elsevier. https://doi.org/10.1016/B978-0-444-63992-9.00022-7

Rangel, F., Enes, P., Gasco, L., Gai, F., Hausmann, B., Berry, D., Oliva-Teles, A., Serra, C. R., & Pereira, F. C. (2022). Differential modulation of the European sea bass gut microbiota by distinct insect meals. Frontiers in Microbiology, 13:831034. doi: 10.3389/fmicb.2022.831034

Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2020). Larvae mediated valorization of industrial, agriculture and food wastes: biorefinery concept through bioconversion, processes, procedures, and products. Processes, 8(7), 857. https://doi.org/10.3390/pr8070857

Renna, M., Rastello, L., Veldkamp, T., Toral, P. G., Gonzalez-Ronquillo, M., Jimenez, L. E. R., & Gasco, L. (2023). Are insects a solution for feeding ruminants? Legislation, scientific evidence, and future challenges. Animal Frontiers, 13(4), 102–111. https://doi.org/10.1093/af/vfad026

Rodríguez-Rodríguez, M., Sánchez-Muros, M. J., Vargas-García, M. del C., Varga, A. T., Fabrikov, D., & Barroso, F. G. (2024). Evaluation of in vitro protein hydrolysis in seven insects approved by the EU for use as a protein alternative in aquaculture. Animals, 14(1), 96. https://doi.org/10.3390/ani14010096

Rumbos, C. I., Karapanagiotidis, I. T., Mente, E., & Athanassiou, C. G. (2019). The lesser mealworm Alphitobius diaperinus: A noxious pest or a promising nutrient source? Reviews in Aquaculture, 11(4), 1418–1437. https://doi.org/10.1111/raq.12300

Rummel, P. S., Beule, L., Hemkemeyer, M., Schwalb, S. A., & Wichern, F. (2021). Black soldier fly diet impacts soil greenhouse gas emissions from frass applied as fertilizer. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.709993

Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1–11. https://doi.org/10.1016/j.ifset.2012.11.005

Rumpold, B. A., Klocke, M., & Schlüter, O. (2017). Insect biodiversity: underutilized bioresource for sustainable applications in life sciences. Regional Environmental Change, 17(5), 1445–1454. https://doi.org/10.1007/s10113-016-0967-6

Şahin, T. (2025). Ecological and geopolitical challenges in sustaining global fishmeal supply for aquaculture. Marine Reports, 4(1), 55–67. https://doi.org/10.5281/zenodo.15764050

Santos-Silva, L., Mello, I. S., Galati, R. L., Battirola, L. D., & Soares, M. A. (2025). Bacteria associated with diplopods used to ferment brewery waste and develop insect feed. Waste and Biomass Valorization. 16, 6311–6328. https://doi.org/10.1007/s12649-025-03071-z

Scala, A., Cammack, J. A., Salvia, R., Scieuzo, C., Franco, A., Bufo, S. A., Tomberlin, J. K., & Falabella, P. (2020). Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Scientific Reports, 10(1), 19448. https://doi.org/10.1038/s41598-020-76571-8

Siddiqui, S.A., Yüksel, A.N., Şahin Ercan, S., Abdul Manap, A.S., Afzal, S., Wu, Y.S., Yudhistira, B., & Ibrahim, S.A. (2024). Edible beetles (Coleoptera) as human food – A comprehensive review. Journal of Insects as Food and Feed (published online ahead of print 2024). https://doi.org/10.1163/23524588-00001095

Soares Araújo, R. R., dos Santos Benfica, T. A. R., Ferraz, V. P., & Santos, E. M. (2019). Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. Journal of Food Composition and Analysis, 76, 22–26. https://doi.org/10.1016/j.jfca.2018.11.005

St-Hilaire, S., Cranfill, K., McGuire, M. A., Mosley, E. E., Tomberlin, J. K., Newton, L., Sealey, W., Sheppard, C., & Irving, S. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. Journal of the World Aquaculture Society, 38(2), 309–313. https://doi.org/10.1111/j.1749-7345.2007.00101.x

Sudwischer, P., Krüger, B., Sitzmann, W., & Hellwig, M. (2025). Chitin analysis in insect-based feed ingredients and mixed feed: development of a cost-effective and practical method. Journal of Animal Physiology and Animal Nutrition, 109(3), 854–866. https://doi.org/10.1111/jpn.14098

Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R., & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy, 98, 197–202. https://doi.org/10.1016/j.renene.2016.03.022

Suryati, T., Julaeha, E., Farabi, K., Ambarsari, H., & Hidayat, A. T. (2023). Lauric acid from the black soldier fly (Hermetia illucens) and its potential applications. Sustainability, 15(13), 383. https://doi.org/10.3390/su151310383

Tavares, M. N., Pereira, R. T., Silva, A. L., Lemes, L. R., Menten, J. F. M., & Gameiro, A. H. (2022). Economic viability of insect meal as a novel ingredient in diets for broiler chickens Journal of Insects as Food and Feed, 8(9), 1015-1026. https://doi.org/10.3920/JIFF2021.0179

Thakur, D., Bairwa, A., Dipta, B., Jhilta, P., & Chauhan, A. (2023). An overview of fungal chitinases and their potential applications. Protoplasma, 260(4), 1031–1046. https://doi.org/10.1007/s00709-023-01839-5

Tran, H. Q., von Siebenthal, E. W., Luce, J.-B., Nguyen, T. T., Stejskal, V., Weinlaender, F., & Janssens, T. (2024). A novel protein source from lesser mealworm (Alphitobius diaperinus) larvae meal for European perch (Perca fluviatilis): Investigation on pellet characteristics, production performance, serum biochemistry, digestibility, histology, sensory and trait of fillet, and environmental indices. Aquaculture, 581, 740460. https://doi.org/10.1016/j.aquaculture.2023.740460

Udomsil, N., Imsoonthornruksa, S., Gosalawit, C., & Ketudat-Cairns, M. (2019). Nutritional values and functional properties of house cricket (Acheta domesticus) and field cricket (Gryllus bimaculatus). Food Science and Technology Research, 25(4), 597–605. https://doi.org/10.3136/fstr.25.597

Van Campenhout, L. (2021). Fermentation technology applied in the insect value chain: making a win-win between microbes and insects. Journal of Insects as Food and Feed, 7(4), 377-382. https://doi.org/10.3920/JIFF2021.x006

Van Huis, A., & Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 43. https://doi.org/10.1007/s13593-017-0452-8

Ververis, E., Boué, G., Poulsen, M., Monteiro Pires, S., Niforou, A., Thomsen, S. T., Tesson, V., Federighi, M., & Naska, A. (2022). A systematic review of the nutrient composition, microbiological and toxicological profile of Acheta domesticus (house cricket). Journal of Food Composition and Analysis, 114, 104859. https://doi.org/10.1016/j.jfca.2022.104859

Yadav, N. K., Deepti, M., Patel, A. B., Kumar, P., Angom, J., Debbarma, S., Singh, S. K., Deb, S., Lal, J., Vaishnav, A., Das, R., Kashyap, S., & Meena, D. K. (2025). Dissecting insects as sustainable protein bioresource in fish feed for aquaculture sustainability. Discover Food, 5(1), 47. https://doi.org/10.1007/s44187-025-00318-5

Yang, G., Zhang, J., Dai, R., Ma, X., Huang, C., Ren, W., Ma, X., Lu, J., Zhao, X., Renqing, J., Zha, L., Guo, X., Chu, M., La, Y., Bao, P., & Liang, C. (2023). Comparative study on nutritional characteristics and volatile flavor substances of yak milk in different regions of Gannan. Foods, 12(11), 2172. https://doi.org/10.3390/foods12112172

Zulkifli, N. F. N. M., Seok-Kian, A. Y., Seng, L. L., Mustafa, S., Kim, Y.-S., & Shapawi, R. (2022). Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLOS ONE, 17(2), e0263924. https://doi.org/10.1371/journal.pone.0263924

Downloads

Published

2025-11-24

How to Cite

Sahin, T. (2025). From biowaste to blue food: insect-driven aquaculture: Insect-driven aquaculture. MARINE REPORTS (MAREP). https://doi.org/10.5281/zenodo.17702811

Issue

Section

Review Article