Effect of arsenic on the biological traits of the Major carp, Rohu (Labeo rohita)

Arcenic impacts on biological traits of carp





Major carp, arsenic, climate change


Arsenic is a highly toxic metalloid that can have detrimental effects on farmed aquatic species, negatively impacting growth, metabolism, immunity and overall wellbeing of fish. The Indian major carp, Rohu (Labeo rohita) is a major freshwater aquaculture species that faces various production related issues associated with water quality parameters. The current study was designed to elucidate the effects of three different doses of arsenic (As) (T1 = 1 µg/L, T2 = 2 µg/L, and T3 = 3 µg/L) on the physiological (growth and O2 consumption), biochemical (blood cell counts), and genetic (expression levels of three selected genes) responses of Rohu. This study revealed significant (P<0.05) biologicl abnormalities and deformities in arsenic-exposed Rohu carp. The growth rate of fish decreased with increasing arsenic concentrations. O2consumption rates of fish were increased (1.6 – 2 fold) with increasing experimental arsenic concentrations but blood cell counts were in a declining trend. Expression levels of the three selected genes showed arsenic dose specific differential changes; higher expression at control condition (1.5 – 2.1 fold) while lower expression at the treatment conditions. Results of this study clearly point out that different doses of arsenic impose stress at different orders of magnitude on the experimental Rohu individuals. The findings of the present study suggest that arsenic pollution significantly impacts the physiological (growth, development, metabolism and survivability), biochemical (hematological parameters) and molecular mechanisms of this economically important fish (L. rohita). Therefore, it is an imperative to maintain the optimum water quality (pollutant free) in the farming environments.


Afroz, K. B., Shah, M. S., Salin, K. R. & Rahi, M. L. (2021). Growth and survival of diploid and triploid bata, Labeo bata (Hamilton, 1822). Aquaculture Fish and Fisheries, 1(1), 42-50.

Ahmed, K., Mamun, H. A., Parvin, E., Akter, M. S., & Khan, M. S. (2013). Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology, 65, 903–909.

Akram, W., Tabassum, M., Rahi, M.L. 2023. Cellular, Physiological, and Biochemical Basis of Adaptive Response to Variable Osmotic Environments by the River Shad, Tenualosa ilisha. Journal of Applied Ichthyology, 4910938 (1-12).

Ali, M. Y., Sabbir, W., Rahi, M. L., Chowdhury, M. M. R. & Faruque, M. O. (2008). Quality changes in shrimp (Penaeus monodon) stored at ambient temperature in plastic and bamboo basket. International Journal of Animal and Fisheries Science, 1(1), 7-13.

Aziz, D., Nguyen, T. V., Rahi, M. L., Hurwood, D. A., & Mather, P. B. (2017). Identification of genes that potentially affect social dominance hierarchy in adult male giant freshwater prawns (Macrobrachium rosenbergii). Aquaculture, 476, 168-183.

Aziz, D., Rahi, M. L., Hurwood, D. A., & Mather, P. B. (2018). Analysis of candidate gene expression patterns of adult male Macrobrachium rosenbergii morphotypes in response to a social dominance hierarchy. Hydrobiologia, 825(1), 121-136.

Babich, R., & Van Beneden, R. J. (2019). Effect of arsenic exposure on early eye development in zebrafish (Danio rerio). Journal of Applied Toxicology, 39(6), 824-831.

Banerjee, S., Mitra, T., Purohit, G. K., Mohanty, S., & Mohanty, B. P. (2015). Immunomodulatory effect of arsenic on cytokine and HSP gene expression in Labeo rohita fingerlings. Fish & Shellfish Immunology, 44, 43-49.

Beyers, D. W., Rice, J. A., Clements, W. H., & Henry, C. J. (1999). Estimating physiological cost of chemical exposure: Integrating energetics and stress to quantify toxic effects in fish. Canadian Journal of Fisheries and Aquatic Sciences, 56, 814-822.

Bose, M. J., Ilavazhahan, M., Tamilselvi, R., & Viswanathan, M. (2013). Effect of heavy metals on the histopathology of gills and brain of fresh water fish Catla catla. Biomedical and Pharmacology Journal, 6, 99-105.

Casu, F., Watson, A. M., Yost, J., Leffler, J. W., Gaylord, T. G., Barrows, F. T., & Bearden, D. W. (2017). Metabolomics analysis of effects of commercial soy-based protein products in red drum (Sciaenops ocellatus). Journal of Proteome Research, 16(7), 2481-2494.

Cheng, C. H., Yan, F. F., Ling, R. Z., Liao, S. A., Miao, Y. T., Ye, C. X., & Wang, A. L. (2015). Effects of ammonia exposure on apoptosis, oxidative stress and immune response in puffer fish (Takifugu obscurus). Aquatic Toxicology, 164, 61-71.

Dai, Y. J., Jia, Y. F., Chen, N., Bian, W. P., Li, Q. K., Ma, Y. B., Chen, Y. L., & Pei, D. S. (2014). Zebra fish as a model system to study toxicology. Environmental Toxicology and Chemistry, 33, 11-17.

Datta, S., Ghosh, D., Saha, D. R., Bhattacharaya, S., & Mazumder, S. (2009). Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus. Aquatic Toxicology, 92, 86-94.

DoF (Department of Fisheries). (2020). National Fish Week, Compendium Book (In Bengali). Ministry of Fisheries and Livestock, Department of Fisheries (pp. 86-97). Dhaka, Bangladesh.

Foley, C. J., Bradley, D. L., & Höök, T. O. (2016). A review and assessment of the potential use of RNA:DNA ratios to assess the condition of entrained fish larvae. Ecological Indicators, 60, 346–357.

Foss, A., Vollen, T., & Øiestad, V. (2003). Growth and oxygen consumption in normal and O2 supersaturated water, and interactive effects of O2 saturation and ammonia on growth in spotted wolffish (Anarhichas minor, Olafsen). Aquaculture, 224(1-4), 105-116.

Fromm, P. O., & Gillette, J. R. (1968). Effect of ambient ammonia on blood ammonia and nitrogen excretion of rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology, 26(3), 887-896.

Gong, G., & O'Bryant, S. E. (2012). Low-level arsenic exposure, AS3MT gene polymorphism and cardiovascular diseases in rural Texas counties. Environmental Research, 113, 52-57.

Han, J. M., Park, H. J., Kim, J. H., Jeong, D. S., & Kang, J. C. (2019). Toxic effects of arsenic on growth, hematological parameters, and plasma components of starry flounder, Platichthys stellatus, at two water temperature conditions. Fisheries and Aquatic Sciences, 22, 1-8.

Hayat, S., Javed, M., & Razzaq, S. (2007). Growth performance of metal stressed major carps viz. Catla catla, Labeo rohita and Cirrhina mrigala reared under semi-intensive culture system. Pakistan Veterinary Journal, 27, 8-12.

Hussain, S. M., Javed, M., Asghar, S., Hussain, M., Abdullah, S., Raza, S. A., & Javid, A. (2010). Studies on growth performance of metals mixture stressed Cirrhina mrigala in earthen ponds. Pakistan Journal of Agricultural Sciences, 47, 263-270.

Islam, S. S., Shah, M. S. & Rahi, M. L. (2010). Study of fecundity and induced breeding of Mystus vittatus. Bangladesh Journal of Zoology, 39(2), 205-212.

Islam, S. S., Shah, M. S. & Rahi, M. L. (2014). Assessment of genetic variability of prawn (Macrobrachium rosenbergii) post larvae (PL) from the broods stocked under different sex ratios. International Journal of Aquaculture, 4(9), 10.5376.

Islam, S. S., Shah, M. S., Shams, F. I., Ali, M. R. & Rahi, M. L. (2015). Genetic variability assay of different natural and hatchery populations of Rohu (Labeo rohita) in Bangladesh. International Journal of Life Sciences, 9(1), 30-36.

Islam, S. M., Zahangir, M. M., Ashaf-Ud-Doulah, M., Khatun, M. M., & Shahjahan, M. (2020). Extreme warm acclimation temperature alters oxygen consumption, micronucleus formation in erythrocytes, and gill morphology of rohu (Labeo rohita) fingerlings. Fish Physiology and Biochemistry, 46(6), 2323-2330.

Javed, M., & Usmani, N. (2017). An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 389–403.

Jezierska, B., Ługowska, K., & Witeska, M. (2009). The effects of heavy metals on embryonic development of fish (a review). Fish Physiology and Biochemistry, 35, 625-640.

Kokou, F., Con, P., Barki, A., Nitzan, T., Slosman, T., Mizrahi, I., & Cnaani, A. (2019). Short-and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European seabass (Dicentrarchus labrax). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 231, 11-18.

Kumari, B., Kumar, V., Sinha, A. K., Ahsan, J., Ghosh, A. K., Wang, H., & De Boeck, G. (2016). Toxicology of arsenic in fish and aquatic systems. Environmental Chemistry Letters, 15, 43-64.

Kundu, M., Ghosh, P., Mitra, S., Das, J., Sau, T., Banerjee, S., States, J. C., & Giri, A. K. (2011). Precancerous and non-cancer disease endpoints of chronic arsenic exposure: The level of chromosomal damage and XRCC3 T241M polymorphism. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 706, 7-12.

Li, K., Olsen, R. E., Østensen, M. A., Altin, D., Kjørsvik, E., & Olsen, Y. (2016). Atlantic cod (Gadus morhua) larvae can biosynthesis phospholipid de novo from 2-oleoyl-glycerol and glycerol precursors. Fish physiology and biochemistry, 42(1), 137-147.

Li, M., Yu, N., Qin, J. G., Li, E., Du, Z., & Chen, L. (2014). Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile dark barbel catfish Pelteobagrus vachelli. Fish and Shellfish Immunology, 38(1), 158-165.

Loughland, I., & Seebacher, F. (2020). Differences in oxidative status explain variation in thermal acclimation capacity between individual mosquito fish (Gambusia holbrooki). Functional Ecology, 10, 1-11.

Moshtaghi, A., Rahi, M. L., Mather, P. B. & Hurwood, D. A. (2017). Understanding the genomic basis of adaptive response to variable osmotic niches in freshwater prawns: a comparative intraspecific RNA-Seq analysis of Macrobrachium australiense. Journal of Heredity, 108(5), 544-552.

Moshtaghi, A., Rahi, M. L., Mather, P. B. & Hurwood, D. A. (2018). An investigation of gene expression patterns that contribute to osmoregulation in Macrobrachium australiense: Assessment of adaptive responses to different osmotic niches. Gene Reports, 13, 76-83.

Mridul, M. M. I., Zeehad, M. S. K., Aziz, D., Salin, K. R., Hurwood, D. A. & Rahi, M. L. (2024). Temperature induced biological alterations in the major carp, Rohu (Labeo rohita): Assessing potential effects of climate change on aquaculture production. Aquaculture Reports, 35, 101954.

Muhammad, S., Akram, W., Aziz, D. & Rahi, M. L. (2023). Effects of ammonia on the biological traits of the orange mud crab (Scylla olivacea). Marine Reports, 2(2), 73-94.

Nath, R. D., Rahi, M. L., Hossain, G. S. & Huq, K. A. (2008). Marketing status of freshwater snail in Khulna district. Bangladesh Research Publication Journal, 1(4), 337-347.

Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental Health Perspectives, 121(3), 295-302.

Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300(5621), 939-944.

Pedlar, R. M., Ptashynski, M. D., Evans, R., & Klaverkamp, J. F. (2002). Toxicological effects of dietary arsenic exposure in Lake Whitefish (Coregonus clupeaformis). Aquatic Toxicology, 57, 167-189.

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29(9), e45–e45.

Rahi, M. L. & Shah, M. S. (2012). Triploidization in rohu× mrigal hybrid and comparison of growth performance of triploid hybrid. Aquaculture Research, 43(12), 1867-1879.

Rahi, M. L. (2017). Understanding the molecular basis of adaptation to freshwater environments by prawns in the genus Macrobrachium [Doctoral dissertation]. Queensland University of Technology. https://doi.org/10.5204/thesis.eprints.118051.

Rahi, M. L., Amin, S., Mather, P. B. & Hurwood, D. A. (2017). Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species (M. koombooloomba). PeerJ, 5, e2977.

Rahi, M. L., Moshtaghi, A., Mather, P. B. & Hurwood, D. A. (2018). Osmoregulation in decapod crustaceans: physiological and genomic perspectives. Hydrobiologia, 825, 177-188.

Rahi, M. L., Mather, P. B., Ezaz, T. & Hurwood, D. A. (2019). The molecular basis of freshwater adaptation in prawns: Insights from comparative transcriptomics of three Macrobrachium species. Genome Biology and Evolution, 11(4), 1002-1018.

Rahi, M. L., Ferdusy, T., Ahmed, S. W., Khan, M. N., Aziz, D., & Salin, K. R. (2020). Impact of salinity changes on growth, oxygen consumption and expression pattern of selected candidate genes in the orange mud crab (Scylla olivacea). Aquaculture Research, 51(10), 4290–4301.

Rahi, M.L., Mather, P.B., & Hurwood, D.A. (2021). Do plasticity in gene expression and physiological responses in Palaemonid prawns facilitate adaptive response to different osmotic challenges? Comparative Biochemistry and Physiology A, 251, 110810.

Rahi, M. L., Mahmud, S., Dilruba, K. J., Sabbir, W., Aziz, D. & Hurwood, D. A. (2021). Temperature induced changes in physiological traits and expression of selected candidate genes in black tiger shrimp (Penaeus monodon) larvae. Aquaculture Reports, 19, 100620.

Rahi, M. L., Azad, K. N., Tabassum, M., Irin, H. H., Hossain, K. S., Aziz, D., Moshtaghi, A. & Hurwood, D. A. (2021). Effects of salinity on physiological, biochemical and gene expression parameters of black tiger shrimp (Penaeus monodon): Potential for farming in low-salinity environments. Biology, 10, 1220.

Rahi, M. L., Sabbir, W., Salin, K. R., Aziz, D., & Hurwood, D. A. (2022). Physiological, biochemical and genetic responses of black tiger shrimp (Penaeus monodon) to differential exposure to white spot syndrome virus and Vibrio parahaemolyticus. Aquaculture, 546, 737337.

Rahman, M. H., Haque, M. M., Alam, M. A., & Rahman, F. (2022). A study on the specific growth rate (SGR) at different stages of Tilapia (Oreochromis niloticus) production cycle in tank based aquaculture system. International Journal of Aquaculture and Fishery Sciences, 8(2), 59–65.

Rahi, M. L., Mather, P. B., de Bello Cioffi, M., Ezaz, T. & Rahi, M. L. (2023). Genomic basis of freshwater adaptation in the Palaemonid prawn genus Macrobrachium: convergent evolution following multiple independent colonization events. Journal of Molecular Evolution, 91, 976–989.

Rajendiran, S., Iqbal, B. M., & Vasudevan, S. (2016). Induced thermal stress on serotonin levels in the blue swimmer crab, Portunus pelagicus. Biochemistry and Biophysics Reports, 5, 425-429.

Randall, D. J. (1990). Oxygen, carbon dioxide and ammonia transfer across teleost fish gills. In Fish Physiology, Fish Toxicology, and Fisheries Management: Proceedings of an International Symposium, Guangzhou, PRC, September 14-16, 1988 (p. 135). Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391-396.

Rogl, K. A., Rahi, M. L., Royle, J., Prentis, P. J. & Hurwood, D. A. (2018). A transcriptome-wide assessment of differentially expressed genes among two highly divergent, yet sympatric, lineages of the freshwater Atyid shrimp, Paratya australiensis. Hydrobiologia, 825(1), 189-196.

Rosas, C., Cuzon, G., Gaxiola, G., Le Priol, Y., Pascual, C., Rossignyol, J., Contreras, F., Sanchez, A., & Van Wormhoudt, A. (2001). Metabolism and growth of juveniles of Litopenaeus vannamei: effect of salinity and dietary carbohydrate levels. Journal of Experimental Marine Biology and Ecology, 259(1), 1-22.

Sabbir, W., Masud, M. A. A., Islam, S. S., Rahman, M. A. & Rahi, M. L. (2010). Some aspects of water quality parameters of the Mouri River, Khulna: An attempt to estimate pollution status. Bangladesh Research Publication Journal, 4(1), 95-102.

Sabbir, W., Khan, M. N., Sultana, S., Rahi, M. L. & Shah, M. S. (2017). Production of heterotic hybrid in Rohu (Labeo rohita) by crossing the riverine and hatchery strains. International Journal of Innovation Sciences and Research, 6(2), 982-986.

Sahu, D. K., Panda, S. P., Meher, P. K., Das, P., Routray, P., Sundaray, J. K., Jayasankar, P., & Nandini, S. (2015). Construction, de-novo assembly and analysis of transcriptome for identification of reproduction-related genes and pathways from Rohu, Labeo rohita (Hamilton). PLOS One, 10(7), e0132450.

Selvi, R. T., & Ilavazhahan, M. (2015). Histopathological changes in gill tissue of the fish Catla catla exposed to sublethal concentration of pesticide methyl parathion and a heavy metal ferous sulphate. Biomedical and Pharmacology Journal, 5(2), 305-312.

Shah, M. S., Ghosh, A. K., Rahi, M. L., Huq, K. A., Rahaman, S. M. B. & Sabbir, W. (2011). Production of heterotic hybrid in rohu (Labeo rohita) through strain crossing. International Journal of Life Sciences, 5(1), 32-38.

Sinha, A. K., Liew, H. J., Diricx, M., Kumar, V., Darras, V. M., Blust, R., & De Boeck, G. (2012). Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carassius auratus). Aquatic Toxicology, 114, 153-164.

Triantaphyllopoulos, K. A., Cartas, D., & Miliou, H. (2020). Factors influencing GH and IGF-I gene expression on growth in teleost fish: how can aquaculture industry benefit? Reviews in Aquaculture, 12(3), 1637-1662.

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3—new capabilities and interfaces. Nucleic Acids Research, 40(15), e115-e115.

Vutukuru, S. S., Arun Prabhath, N., Raghavender, M., & Yerramilli, A. (2007). Effect of arsenic and chromium on the serum amino-transferases activity in Indian major carp, Labeo rohita. International Journal of Environmental Research and Public Health, 4(3), 224-227.

Wedemeyer, G. (1996). Physiology of fish in intensive culture systems. Springer Science & Business Media.

Witeska, M., Kondera, E., Ługowska, K., & Bojarski, B. (2022). Hematological methods in fish–Not only for beginners. Aquaculture, 547, 737498.

Zarantoniello, M., Bortoletti, M., Olivotto, I., Ratti, S., Poltronieri, C., Negrato, E., & Bertotto, D. (2021). Salinity, temperature and ammonia acute stress response in sea bream (Sparus aurata) juveniles: A multidisciplinary study. Animals, 11(1), 97.

Zeehad, M. S. K., Mridul, M. M. I., Chakrobortty, D., Mahfuj, S., Aziz, D., Hurwood, D. A. & Rahi, M. L. (2024). Effects of ammonia on the cellular, physiological, biochemical and genetic traits of Indian major carp (Labeo rohita) fry in artisanal Bangladeshi aquaculture. Aquaculture Fish and Fisheries, 4(1), e160.

Zeynali, M., Nafisi B. M., Morshedi, V., Ghasemi, A., & Torfi M. M. (2020). Replacement of dietary fishmeal with Sargassum ilicifolium meal on growth, innate immunity and immune gene mRNA transcript abundance in Lates calcarifer juveniles. Aquaculture Nutrition, 26, 1657-1668.




How to Cite

LEMA, M. Z., Al ZOBAYER, M. F., AKRAM, W., ANTI, F. T. Z., & RAHI, L. (2024). Effect of arsenic on the biological traits of the Major carp, Rohu (Labeo rohita): Arcenic impacts on biological traits of carp. MARINE REPORTS (MAREP), 3(1), 32–47. https://doi.org/10.5281/zenodo.12362153



Research Article