Examination of the structural chemistry of the otoliths of Red porgy, Pagrus pagrus by Raman analysis

Structural chemistry of otoliths in Red porgy

Authors

DOI:

https://doi.org/10.5281/zenodo.10182911

Keywords:

Pagrus pagrus, sagittal otolith, otolith chemistry, Raman spectroscopy

Abstract

The present study focused the determine structural chemistry of the otoliths of red porgy, Pagrus pagrus, by using Raman analysis. The Raman analysis was conducted within the spectral scanning range of 3785-50 cm-1. According to the Raman spectrum of otoliths, it becomes evident that there are two significant vibration bands that contribute to the otolith's main structure. The first is the intense vibration band at 1095 cm-1, known as the symmetric (V1) band of the carbonate (-CO3-2) molecule. The second is the moderate in-plane bending band at 710 cm-1, referred to as the in-plane (V4) band. These bands play a fundamental role in the structure of the otolith. Additionally, the Raman spectrum of the otolith reveals the presence of bands related to metal bonds forming with the carbonate (-CO3-2) molecule. These bands are observed at 155 and 210 cm-1 and exhibit a moderate intensity. However, it is important to note that the specific cations or metal bonds involved cannot be determined solely from these bands. The Raman analysis of red porgy sagittal otolith composition and structure has provided valuable insights into the chemical composition and structure of these fish ear stones. The application of Raman spectroscopy to examine otoliths seems like a highly useful technique for understanding the composition and structure of these crystals. By utilizing Raman spectroscopy, researchers can gain valuable insights into the chemical composition and structures of otoliths in the inner ear. This examination allows for the determination of the minerals and elements contained within otoliths.

References

Alekseev, F. E. (1982). Hermaphroditism in Sparid Fishes Perciformes, Sparidae: I. Protogyny in Porgies, Pagrus pagrus, P. orphus, P. ehrenbergi, and P. auriga, from West Africa. Journal of Ichthyology, 22, 85-94.

Ashford, J. R., Jones, C. M., Hofmann, E. E., Everson, I., Moreno, C. A., Duhamel, G., & Williams, R. (2008). Otolith Chemistry Indicates Population Structuring by the Antarctic Circumpolar Current. Canadian Journal of Fisheries and Aquatic Sciences, 65(2), 135-146.

Ayyıldız, H. (2011). Çanakkale Boğazında Genç Mırmır, Lithognathus Mormyrus (Linnaeus, 1758), Bireylerinin Popülasyon Dinamiği Yönünden İncelenmesi [Unpublished doctoral dissertation]. Çanakkale Onsekiz Mart University (In Turkish).

Campana, S. E. (1999). Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263-297.

Campana, S. E., & Neilson, J. D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 1014-1032.

Campana, S., Chouinard, G., Hanson, J., Frechet, A., & Brattey, J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research, 46(1), 343-357.

Campana, S. J., & Thorrold, S. R. (2001). Otolith geochemistry: A new tool for studying fish populations. Fisheries, 26(10), 16-22.

Devlin, R. H., & Nagahama, Y. (2002). Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture, 208(3-4), 191-364.

Disspain, M. C., Ulm, S., Izzo, C., & Gillanders, B. M. (2016). Do fish remains provide reliable palaeoenvironmental records? An examination of the effects of cooking on the morphology and chemistry of fish otoliths, vertebrae and scales. Journal of Archaeological Science, 74, 45–59. https://doi.org/10.1016/j.jas.2016.08.010

Franco, A., Bulleri, F., Pennetta, A., De Benedetto, G. E., Clarke, K., & Guidetti, P. (2014). Within-Otolith variability in chemical fingerprints: implications for sampling designs and possible environmental interpretation. PLOS ONE, 9(7), e101701. https://doi.org/10.1371/journal.pone.0101701

Gibb, F. M., Regnier, J., Donald, K., & Wright, P. J. (2017). Connectivity in the early life history of sandeel inferred from otolith microchemistry. Journal of Sea Research, 119, 8–16. https://doi.org/10.1016/j.seares.2016.10.003

Gillanders, B. M., & Kingsford, M. J. (2000). Elemental fingerprints of otoliths of fish may distinguish estuarine 'nursery' habitats. Marine Ecology Progress Series, 201, 273-286.

Miyana, K., Khana, M. A., Patel, D. K., Khana, S., & Ansar, N. G. (2016). Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus (Linnaeus, 1758) inhabiting the Gangetic river system. Fisheries Research, 173, 294-302.

Olson, D. B., Kourafalou, V. H., Johns, W. E., Samuels, G., & Veneziani, M. (2007). Aegean Surface Circulation from a Satellite-Tracked Drifter Array. Journal of Physical Oceanography, 37(7), 1898-1917.

Popper, A. N., & Lu, Z. (2000). Structure–function relationships in fish otolith organs. Fisheries Research, 46(1), 15-25. https://doi.org/10.1016/S0165-7836(00)00129-6

Rooker, J. R., Secor, D. H., Zdanowicz, V. S., De Metrio, G., & Relini, L. O. (2003). Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fisheries Oceanography, 12(2), 75-84.

RRUFF Project. (n.d.). Aragonite R040078 data. Retrieved October 20, 2023, from https://rruff.info/Aragonite/R040078

Ryer, C. E., & Campana, S. J. (2015). Otolith geochemistry: A review of applications to fish population studies. Reviews in Fish Biology and Fisheries, 25(1), 1-37.

Sato, K., & Tsukamoto, K. (2019). Otolith geochemistry and its applications to fish biology. Annual Review of Marine Science, 11, 547-571.

Steer, M. A., Halverson, G. P., Fowler, A. J., & Gillanders, B. M. (2010). Stock Discrimination of Southern Garfish (Hyporhamphus melanochir) by Stable Isotope Ratio Analysis of Otolith Aragonite. Environmental Biology of Fishes, 89(3-4), 369-381.

Thakur, M., & Ramaswamy, G. (2012). Micro-Raman spectroscopy in otoliths of Lates calcarifer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 613-617. https://doi.org/10.1016/j.saa.2010.04.035

Wood, R. S., Chakoumakos, B. C., Fortner, A. M., Gillies-Rector, K., Frontzek, M., Ivanov, I. N., Kah, L. C., Kennedy, B. P., & Pracheil, B. M. (2022). Quantifying fish otolith mineralogy for trace-element chemistry studies. Scientific Reports, 12(1), 15761.

Zodiatis, G., Alexandri, S., Pavlakis, P., Jonsson, L., Kallos, G., Demetropoulos, A., Georgiou, G., Theodorou, A., & Balopoulos, E. (1996). Tentative study of flow patterns in the North Aegean Sea using NOAA-AVHRR images and 2D model simulation. Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 14(11), 1221-1231.

Zong, Y., Wang, X., & Lin, P. (2009). Raman spectroscopy for study of otolith. Journal of Applied Physics, 105(10), 102033. https://doi.org/10.1063/1.3125725

Downloads

Published

2023-12-05

How to Cite

KIZILKAYA, B., AYYILDIZ, H., & ALTIN, A. (2023). Examination of the structural chemistry of the otoliths of Red porgy, Pagrus pagrus by Raman analysis: Structural chemistry of otoliths in Red porgy. MARINE REPORTS (MAREP), 2(2), 118–126. https://doi.org/10.5281/zenodo.10182911

Issue

Section

Research Article