Effect of morphometric variables and natural microbial load on the survival time of live Mytilus galloprovincialis during postharvest cold storage
Microbial load and survival rate of Mytilus galloprovincialis
DOI:
https://doi.org/10.5281/zenodo.14566914Keywords:
Mediterranean mussel, post-harvest storage, size-dependent survival, microbial dynamics, shelf life, morphometric traitsAbstract
This study investigated the relationships between morphometric characteristics, microbiological parameters, pH changes, and survival rates of Mediterranean mussels (Mytilus galloprovincialis) during post-harvest storage at +4°C. Mussels were categorized into three size groups based on shell length: large (63.92-80.19 mm), medium (48.51-62.63 mm), and small (30.08-47.75 mm). Total heterotrophic aerobic bacteria (THAB), Enterobacteriaceae, and Vibrio sp. counts were monitored over a 16-day storage period, along with pH changes and survival rates. Results demonstrated significant size-dependent variations in survival, with larger specimens showing superior viability throughout storage. THAB counts increased continuously across all groups, while Enterobacteriaceae levels remained relatively stable in medium and small groups. Vibrio sp. counts decreased in large specimens but remained stable in other groups. Strong negative correlations were observed between survival rates and both THAB (r: -0.854, p<0.001) and Enterobacteriaceae (r: -0.777, p<0.001) counts. Principal component analysis revealed that the first two components explained 83% of total variance, with physical dimensions primarily influencing PC1 (56.5%) and yield-related traits, pH, and THAB characterizing PC2 (26.5%). By day 16, medium and small groups reached 0% survival, while large specimens maintained partial survival. These findings suggest that mussel size significantly influences post-harvest survival and should be considered when developing storage protocols. Future research should focus on optimizing storage conditions through combined approaches of temperature control, modified atmospheres, and periodic water exposure, particularly considering morphometric variables.References
André, C., Bibeault, J. F., & Gagné, F. (2021). Identifying physiological traits of species resilience against environmental stress in freshwater mussels. Ecotoxicology, 30, 1862-1871. https://doi.org/10.1007/s10646-021-02457-8
Azizan, A., Alfaro, A., Jaramillo, D., Venter, L., Young, T., Frost, E., Lee, K., Nguyen, T., Kitundu, E., Archer, S., Ericson, J., Foxwell, J., Quinn, O., & Ragg, N. (2022). Pathogenicity and virulence of bacterial strains associated with summer mortality in marine mussels (Perna canaliculus). FEMS Microbiology Ecology, 98(12), fiac140 https://doi.org/10.1093/femsec/fiac140
Balkaya, B. Z., Gürkan, M., & Künili, I. E., (2023). Effects of Internal Exposure to Vibrio harveyi on Histopathological Changes in Mediterranean Mussel (Mytilus galloprovincialis Lamarck, 1819). Advanced and Contemporary Studies in Agriculture, Forest and Water Issues (pp.104-113), İzmir, Duvar Yayınları.
Barrento, S., Lupatsch, I., Keay, A., & Christophersen, G. (2013). Metabolic rate of blue mussels (Mytilus edulis) under varying post-harvest holding conditions. Aquatic Living Resources, 26(3), 241-247. https://doi.org/10.1051/alr/2013050
Benjamin, E., Jeffs, A., Handley, S., Toone, T., & Hillman, J. (2023). Determining restoration potential by transplanting mussels of different size classes over a range of aerial exposures. Marine Ecology Progress Series, 713, 71-81. https://doi.org/10.3354/meps14337
Bernárdez, M., & Pastoriza, L. (2013). Effect of oxygen concentration and temperature on the viability of small-sized mussels in hermetic packages. LWT-Food Science and Technology, 54(1), 285-290. https://doi.org/10.1016/j.lwt.2013.05.001
Chakma, S., Rahman, M. A., Mali, S. K., Debnath, S., Hoque, M. S., & Siddik, M. A. (2022). Influence of frozen storage period on the biochemical, nutritional, and microbial quality of Skipjack tuna (Katsuwonus pelamis) collected from the Bay of Bengal coast of Bangladesh. Food Chemistry Advances, 1, 100139. https://doi.org/10.1016/j.focha.2022.100139
Çolakoglu, F. A., Çardak, M., Çolakoglu, S., & Künili, I. E. (2014). Depuration Times of Donax trunculus and Tapes decussatus. Brazilian Journal of Microbiology, 45, 1017-1022. https://doi.org/10.1590/S1517-83822014000300034
Colakoglu, F. A., Ormanci, H. B., Berik, N., Kunili, I. E., & Colakoglu, S. (2011). Proximate and elemental composition of Chamelea gallina from the southern coast of the Marmara Sea (Turkey). Biological Trace Element Research, 143, 983-991. https://doi.org/10.1007/s12011-010-8943-3
Colakoglu, F. A., Ormanci, H. B., Kunili, I. E., & Colakoglu, S. (2010). Chemical and Microbiological Quality of the Chamelea gallina from the Southern Coast of the Marmara Sea in Turkey. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16(1), https://doi.org/10.9775/kvfd.2010.2654
Çolakoğlu, F., Çolakoğlu, S., Künili, İ. E., Ormancı, H. B., Ertuğral, T. G., & Yüzgeç, U. (2022). Türkiye’de gıda güvenliği konusunda tüketicilerin bilinç düzeyinin belirlenmesi. Akademik Et ve Süt Kurumu Dergisi, (4), 13-24.
Çolakoğlu, S., Çolakoğlu, F., & Künili, İ. E. (2024). Length – weight relationships, meat yield and morphometric indices of five commercial bivalve species collected from the Çanakkale Strait (Türkiye). Aquatic Sciences and Engineering, 39(1), 36-42. https://doi.org/10.26650/ASE20241371586
Çolakoğlu, S., Künili, İ. E., & Çolakoğlu, F. (2020). Bioaccumulation monitoring of chemical contaminants in mussels Mytilus galloprovincialis from the southern coast of the Marmara Sea, Turkey. Turkish Journal of Veterinary & Animal Sciences, 44(2), 235-243. https://doi.org/10.1590/10.3906/vet-1905-7
Dinç, S. Ö., Künili, İ. E., & Çolakoğlu, F. (2022). İklim değişimi sürecinin sürdürülebilir ve güvenli gıda üretimine etkisi. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 36(2), 447-460. https://doi.org/10.20479/bursauludagziraat.994886
European Union. (2005). Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs.
FAO. (2024). The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action. United Nations Food and Agriculture Organization (FAO), Rome, Italy. https://openknowledge.fao.org/handle/20.500.14283/cd0683en
FDA. (1998). Bacteriological Analytical Manual Edition 8, Revision A. Food and Drug Administration (FDA) Division of Microbiology and Association of Official Analytical Chemists, New Hampshire, USA. 250 p.
Goulas, A. E., Chouliara, I., Nessi, E., Kontominas, M. G., & Savvaidis, I. N. (2005). Microbiological, biochemical and sensory assessment of mussels (Mytilus galloprovincialis) stored under modified atmosphere packaging. Journal of Applied Microbiology, 98(3), 752-760. https://doi.org/10.1111/j.1365-2672.2004.02512.x
Hirabayasi, M., Okazaki, T., & Tanimoto, S. (2022). Changes in extractive components in live Mytilus galloprovincialis mussels during ice storage. Fisheries Science, 88(181–189). https://doi.org/10.1007/s12562-021-01568-9
Ibarrola, I., Arranz, K., Markaide, P., & Navarro, E. (2022). Metabolic size scaling reflects growth performance effects on age-size relationships in mussels (Mytilus galloprovincialis). PLoS ONE, 17. https://doi.org/10.1371/journal.pone.0268053.
Jozić, S., Milanković, K., Brajčić, T., Šolić, M., Šantić, D., & Ordulj, M. (2017). The effect of intravalvular liquid loss on changes in Escherichia coli levels in live, refrigerated mussels (Mytilus galloprovincialis). Journal of Aquatic Food Product Technology, 26(4), 491-500. https://doi.org/10.1080/10498850.2016.1214655
Küni̇li̇, İ. E. (2024). Comparative analysis of the efficiency of different commercial depuration systems and the evaluation of species-specific depuration conditions in bivalve mollusc production. Aquacultural Engineering, 107, 102468. https://doi.org/10.1016/j.aquaeng.2024.102468
Künili, İ. E., & Ateş, A. S. (2021). Effects of seasonal changes and environmental factors on bioindicator bacteria levels in Çardak Lagoon, Çanakkale Strait, Turkey. Oceanological and Hydrobiological Studies, 50(3), 299-309. https://doi.org/10.2478/oandhs-2021-0025
Künili, İ. E., & Çolakoğlu, F. (2019). Characterization of depuration process of Mytilus galloprovincialis in presence of chloramine-T and super-oxidized water. Turkish Journal of Agriculture-Food Science and Technology, 7, 73-76. https://doi.org/10.24925/turjaf.v7isp1.73-76.2717
Künili, İ. E., & Dinç, S. Ö. (2024). Determination the changes of E. coli depuration times in Ruditapes decussatus and Venus verrucosa by production area and species differences. Aquatic Animal Reports, 2(1), 1-8. https://doi.org/10.5281/zenodo.10657758
Künili, I. E., (2023). Çanakkale Kıyılarında Dağılım Gösteren Su Ürünlerinin Gıda Güvenliği Açısından Değerlendirilmesi. Çanakkale’de Su Ürünleri, Balıkçılık ve Denizcilik (pp.353-370), Nobel Bilimsel Eserler (In Turkish).
Künili, İ. E., Çolakoğlu, S., & Çolakoğlu, F. (2021a). Levels of PAHs, PCBs, and toxic metals in Ruditapes philippinarum and Donax trunculus in Marmara Sea, Turkey. Journal of the Science of Food and Agriculture, 101(3), 1167-1173. https://doi.org/10.1002/jsfa.10728
Künili, I. E., Dinç, S. Ö., Ay, M., Çakır, F., & Gezen, O. (2023). Vibrio Türlerinin Çanakkale Boğazı’ndaki Sayı ve Dağılımlarının Belirlenmesi. Su Ürünlerinde Yeni Gelişmeler (pp.5-23), Ankara: BİDGE Yayınları (In Turkish).
Künili, İ. E., Ertürk Gürkan, S., Aksu, A., Turgay, E., Çakir, F., Gürkan, M., & Altinağaç, U. (2021b). Mass mortality in endangered fan mussels Pinna nobilis (Linnaeus 1758) caused by co-infection of Haplosporidium pinnae and multiple Vibrio infection in Çanakkale Strait, Turkey. Biomarkers, 26(5), 450-461. https://doi.org/10.1080/1354750X.2021.1910344
Lopez, A., Bellagamba, F., & Moretti, V. (2022). Nutritional quality traits of Mediterranean mussels (Mytilus galloprovincialis): A sustainable aquatic food product available on Italian market all year round. Food Science and Technology International, 29, 718 - 728. https://doi.org/10.1177/1082013222110958
Nuñal, S. N., Monaya, K. J. M., Mueda, C. R. T., & Santander-De Leon, S. M. (2023). Microbiological quality of oysters and mussels along its market supply chain. Journal of Food Protection, 86(3), 100063. https://doi.org/10.1016/j.jfp.2023.100063
Odeyemi, O., Dabadé, D., Amin, M., Dewi, F., Kasan, N., Onyeaka, H., Dada, A., D., S., & Anyogu, A. (2023). Microbial diversity of bivalve shellfish and the use of innovative technologies for preservation, monitoring and shelf-life extension. Food Research, 7(2), 209-221. https://doi.org/10.26656/fr.2017.7(2).998
Panayotova, V., Merdzhanova, A., Stancheva, R., Dobreva, D., Peycheva, K., & Makedonski, L. (2021). Farmed mussels (Mytilus galloprovincialis) from the Black Sea reveal seasonal differences in their neutral and polar lipid fatty acids profile. Regional Studies in Marine Science, 44, 101782. https://doi.org/10.1016/j.rsma.2021.101782
Peycheva, K., Panayotova, V., Stancheva, R., Makedonski, L., Merdzhanova, A., Cicero, N., Parrino, V., & Fazio, F. (2021). Trace Elements and Omega-3 Fatty Acids of Wild and Farmed Mussels (Mytilus galloprovincialis) Consumed in Bulgaria: Human Health Risks. International Journal of Environmental Research and Public Health, 18. https://doi.org/10.3390/ijerph181910023
Ratnawati, S. E., Kuuliala, L., Walgraeve, C., Demeestere, K., Ragaert, P., & Devlieghere, F. (2023). The effect of high oxygen modified atmospheres on the quality degradation of packed live blue mussels (Mytilus edulis). LWT, 177, 114537. https://doi.org/10.1016/j.lwt.2023.114537
Rey, M. S., Miranda, J. M., Aubourg, S., & Barros‐Velázquez, J. (2012). Improved microbial and sensory quality of clams (Venerupis rhomboideus), oysters (Ostrea edulis) and mussels (Mytilus galloprovincialis) by refrigeration in a slurry ice packaging system. International journal of food science & technology, 47(4), 861-869. https://doi.org/10.1111/j.1365-2621.2011.02919.x
Rosario, H., Tolentino, P., Cruz, C., & Dy, C. (2023). Microbiological and Physico-Chemical Quality of Green Mussels Perna viridis (Linnaeus, 1758) Along the Supply Chain in Bacoor City, Cavite, Philippines. Current Research in Nutrition and Food Science Journal 11(2), 795. http://dx.doi.org/10.12944/CRNFSJ.11.2.29
Schoinas, K., Konstantou, V., Bompou, E., Floros, G., Chatziplis, D., Imsiridou, A., & Loukovitis, D. (2023). Microbiome Profile of the Mediterranean Mussel (Mytilus galloprovincialis) from Northern Aegean Sea (Greece) Culture Areas, Based on a 16S rRNA Next Generation Sequencing Approach. Diversity 15(3), 463. https://doi.org/10.3390/d15030463
Suplicy, F. M., Bernardi, F., de Souza, R. V., Miotto, M., & Tribuzi, G. (2023). Use of nylon net packing to increase the survival time of cultured mussels. Boletim do Instituto de Pesca, 49. https://doi.org/10.20950/1678-2305/bip.2023.49.e830
Theodorou, J. A., Leech, B. S., Perdikaris, C., Hellio, C., & Katselis, G. (2019). Performance of the cultured Mediterranean mussel Mytilus galloprovincialis (Lamark 1819) after summer post-harvest reimmersion. Turkish Journal of Fisheries and Aquatic Sciences, 19(3), 221-229. http://doi.org/10.4194/1303-2712-v19_3_05
Tuckey, N. P., Timms, B. A., Fletcher, G. C., Summers, G., Delorme, N. J., Ericson, J. A., Ragg, N. L. C., Miller, P., Wibisono, R., Taylor, R., Adams, S. L., & Zamora, L. N. (2023). Examination of the potential of refrigerated seawater to improve live transport of the mussel Perna canaliculus: physiological responses, meat quality and safety implications under different chilled storage conditions. Aquaculture, 575, 739794. https://doi.org/10.1016/j.aquaculture.2023.739794
Wang, R., Hirabayashi, M., Furuta, A., Okazaki, T., & Tanimoto, S. (2023). Changes in extractive components and bacterial flora in live mussels Mytilus galloprovincialis during storage at different temperatures. Journal of Food Science, 88(4), 1654-1671. https://doi.org/10.1111/1750-3841.16502
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 İbrahim Ender KÜNİLİ, Selin Özge DİNÇ, Umut ARABACIOĞLU, Yusuf Kaan ONGAN, Cengiz ÇELEN, Mahmut HİSAR
This work is licensed under a Creative Commons Attribution 4.0 International License.